• Title/Summary/Keyword: Wheel life

Search Result 200, Processing Time 0.033 seconds

Durability Evaluation on the Air-Braking Release Failure Proof Valve of Cargo Train (화물열차 공기제동 완해불량 방지 밸브의 내구성 평가)

  • Lee, Jun-Ku;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.32-38
    • /
    • 2020
  • Cargo train braking uses the pressure changes in the air braking pipe to operate the braking tightening and releasing service repeatedly. Air-braking release failure means partial braking caused by a failure of the variable load valve after the driver handling the brake release. This phenomenon causes wheel flaws while driving a wagon, resulting in wheel breakage or train derailment. This study developed the air-braking release failure proof valve considering the technical requirements of the railway operation corporations. In addition, a durability test of the valve was carried out using a braking performance simulator, and its operating performance was evaluated from the pneumatic history under cyclic braking conditions. The warranty life of this valve was assessed by performing 160,000 cycles of testing of 12 prototypes in accordance with the zero-failure test method, considering the number of braking cycles while driving the wagon. During the durability test, the pneumatic input time, output time, and release velocity were almost constant. The warranty life of this valve was 59,860 times the 95% confidence level, which means that it can be operated without trouble for four years when the valve is installed in the bogie of the wagon.

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent (계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가)

  • Cho, Han-Goo;Lee, Un-Yong;Han, Dong-Hee;Kang, Sung-Hwa;Choi, In-Hyuk;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. Polymer material is also investigated it's tracking resistance by adding surface active agent in IEC 587. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination, STRI guide and thermal image camera.

An Observation on the Developing Process of the Sports Utility Vehicles (스포츠유틸리티 차량의 발전과정 고찰)

  • 구상
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.449-460
    • /
    • 2004
  • Various types of the sports utility vehicles become more popular in these days. This phenomenon says the increasing demand of performance oriented vehicles for the various life style It is changing now the rather the simple needs of passenger cars of the past. This popularity is due to not only for the increased leisure time which resulted from the five day working labor policy, but also the development of automotive technology. In addition to a large variety of vehicle and enhanced performance is another reason either. There have been many kind of multi-functional vehicles from the early days of the automotive history, and most of them have been evolved from the $\ulcorner$Jeep$\lrcorner$ which were developed by American makers. And various type of orthodox and crossover vehicles that is combined to many functional aspects for a transportation has been revealed so far. Usually the ambi-tendency has been revealed, in which the crossover vehicle has been become compact, on the other hand the orthodox type of 4-wheel drive vehicles has been become larger for being heavy duty vehicles. And this would be expand widely to more vehicles and brands in the future.

  • PDF

A Kinematic Model Based on the Rear Speed and Steering Angle of Three-Wheeled Agriculture Electric Vehicle (농업용 삼륜구동 전기자동차의 후방 속도 및 조향각에 기반한 운동학적 모델)

  • Choi, Wonsik;Pratama, Pandu Sandi;Supeno, Destiani;Byun, Jaeyoung;Lee, Ensuk;Yang, Jiung;Keefe, Dimas Harris Sean;Jeon, Yeonho;Chung, Sungwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.197-205
    • /
    • 2018
  • In this research, tricycle vehicle simulation based on multi-body environment has been introduced. Mathematical model of tricycle vehicle was developed. In this research the left and right wheel speed are calculated based on the rear steering angle and velocity. The kinematic model for the three - wheel drive system was completed and the results were analyzed using the actual vehicle drawings. Through simulink vehicle performance on linear and rotation movement were simulated. Using the mathematical model the control system can be applied directly to the tricycle vehicle. The simulation result shows that the proposed vehicle model is successfully represent the movement characteristics of the real vehicle. This model assists the vehicle developer to create the controller and understand the vehicle during the development process.

A Study on Kinematic Design of Multi-axis Simulator Linkage (다축 제어 시뮬레이터 링크부의 기구학적 설계)

  • 정상화;박용래;류신호;김현욱;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.711-714
    • /
    • 2001
  • As the life cycle of the vehicle become shorter, the method that reduce the development time of new model become more important. In this reason, the development of the simulator that provides similar environment with the actual vehicle road characteristics is increasing. In this paper, the multi-axis simulator is designed and analyzed by kinematic method. The simulator has a function simulating the 3 load elements; vertical, longitudinal, and lateral force respectively and simultaneously. The result of this paper can be used for developing the multi-axis simulator linkage.

  • PDF

A Study on Rolling Contact Fatigue of Rail by Damage Mechanics (손상역학에 의한 레일의 구름접촉피로 연구)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.931-937
    • /
    • 2008
  • The rail/wheel rolling contact affects the microstructure in the surface layer of rail. Recently. continuum damage mechanics allows us to describe the microprocesses involved during the straining of materials and structures at the macroscale. Elastic and plastic strains. the corresponding hardening effects are generally accepted to be represented by global continuum variables. The purpose of continuum damage mechanics is to introduce the possibility of describing the coupling effects between damage processes and the stress-strain behavior of materials. In this study. the continuum damage mechanics caused by elastic deformation was briefly introduced and applied to the fatigue damage of the rails under the condition of cyclic loading. The material parameter for damage analysis was first determined so that it could reproduce the life span under the compressive loading in the vicinity of fatigue limit. Some numerical studies have been conducted to show the validity of the present computational mechanics analysis.

A Study on the Dynamic Characteristics and Finite element analysis of 3-axis road simulator link unit (3축 로드 시뮬레이터의 링크부의 동특성 및 FEM 해석에 관한 연구)

  • 박용래;정상화;류신호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.694-697
    • /
    • 1997
  • As the life cycle of the vehicle become shorter, the method that reduce the development time of new model become more important. In this reason, the development of the simulator that provides similar environment with the actual vehicle load characteristics is increasing. In this paper, the link unit of the 3-axis road simulator is designed and simulated with dynamic analysis software ADMS. and the maximum stress and strain are analyzed for the safety of link and specifications of optimal design using finite element method.

  • PDF