• 제목/요약/키워드: Wheel flange

검색결과 75건 처리시간 0.021초

철도차량 현가특성의 최적설계에 관한 연구 (A Study on the Optimum Design of Railway Vehicle Suspension Characteristics)

  • 조동현;임진수
    • 한국철도학회논문집
    • /
    • 제2권2호
    • /
    • pp.6-12
    • /
    • 1999
  • In this study, the most important suspension characteristics of railway vehicle, such as primary and secondary stiffness, are optimized to maximize ride qualify. Critical speed, secondary suspension stroke oil tangent track and derailment coefficient on the maximum curvature, are selected as the performance constraints. Piecewise linear curving model is used to evaluate derailment coefficient where it is assumed that wheel/rail contacts occurs at tread or at idealized flange. The combined design procedure is used to optimize above design variables at the same time.

  • PDF

윤축-레일 접촉메카니즘을 고려한 열차-교량 동적상호작용 해석 (Dynamic Interaction Analysis of Train-bridge Considering Rail-wheel Contact Mechanism)

  • 민동주;곽종원;김문영
    • 한국철도학회논문집
    • /
    • 제18권4호
    • /
    • pp.363-373
    • /
    • 2015
  • 본 논문은 휠-레일 사이의 접촉메카니즘을 이용하여 휠과 레일 사이의 분리를 허용하고, 횡 방향으로의 플랜지 접촉을 허용하는 비선형 동적 상호작용 해석법을 제시하는데 그 목적이 있다. 먼저 휠-레일 사이의 상호작용력을 압축스프링으로 이상화한 스프링 모델과 휠-레일 사이가 항상 접촉하고 있다는 가정하에 적용되는 non-jump모델에 대해 간략히 소개한 후 접촉메카니즘을 이용한 비선형 접촉모델에 대해 기술한다. 위 3가지 모델에 대한 수치해석 결과를 비교하기 위하여, 단순보 위를 지나가는 KTX열차에 대해 휠-레일 사이의 상호작용력을 각각 적용하여 동적 응답을 비교 분석하였다. 또한 특정 조건하에 플랜지 접촉을 강제 발생시켜 횡방향 응답의 변화를 살펴보았다.

차륜-레일 구름접촉을 적용한 철도차량 유한요소 모델의 충돌 기인 탈선거동 해석 (Collision-induced Derailment Analysis of a Finite Element Model of Rolling Stock Applying Rolling Contacts for Wheel-rail Interaction)

  • 이준호;구정서
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.1-14
    • /
    • 2013
  • In this paper, a finite element analysis technique of rolling stock models for collision-induced derailments was suggested using rolling contacts for wheel-rail interaction. The collision-induced derailments of rolling stock can be categorized into two patterns of wheel-climb and wheel-lift according to the friction direction between wheel flange and rail. The wheel-climb derailment types are classified as Climb-up, Climb/roll-over and Roll-over-C types, and the wheel-lift derailment types as Slip-up, Slip/roll-over and Roll-over-L types. To verify the rolling contact simulations for wheel-rail interaction, dynamic simulations of a single wheelset using Recurdyn of Functionbay and Ls-Dyna of LSTC were performed and compared for the 6-typical derailments. The collision-induced derailment simulation of the finite element model of KHST (Korean High Speed Train) was conducted and verified using the theoretical predictions of a simplified wheel-set model proposed for each derailment type.

등가답면구배를 목적함수로 하는 차륜답면형상 설계기법 (Design Method of Railway Wheel Profile with Objective Function of Eqivalent Conicity)

  • 허현무;유원희;박준혁;김민수
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.13-19
    • /
    • 2010
  • A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.

곡선부 저속주행시 타오르기 탈선의 원인과 대책 (Cause and Counterplan of Wheel Climb Derailment at Low Speed on Curves)

  • 함영삼;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1031-1035
    • /
    • 2007
  • When vehicles running, vertical force and lateral force act except load of vehicles to rail and wheel. This force happens by complex motion at running. If mark vertical force by P and lateral force by Q, derailment coefficient displays Q/P, most important indicator pointer of running safety judgment. If Q is grown than P from derailment coefficient, than arrived to derailment because wheel climb or jumps over rail. Wheel climb derailment among kind of derailment is when attack angle is +, wheel and rail strike and flange rides to rail. This derailment occurs much in curved line and occurs in low speed. In this study, occurred when running at low speed on curved line, analyze cause of derailment and presented the countermeasure plan.

  • PDF

차륜과 레일 접촉위치의 수치해석에 관한 연구 (A Study on Numerical Analysis of Wheel-rail Contact Points)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.236-242
    • /
    • 2009
  • 본 연구에서는 철도차량의 차륜과 레일에 대해 플랜지 접촉을 포함하여 모든 위치예서 차륜-레일간 접촉 위치를 수치 해석적으로 구하는 방범을 제안한다. 이를 위해 차륜과 레일의 형상은 매개변수로 표현되는 3차원 곡면함수로 나타내었다. 기구학적 구속조건식을 Newton-Rhapson 방법을 이용하여 구하는 것과 차륜과 레일간 최소거리가 0이 된다는 최적화 방법을 동시에 이용하여 정확하고 효율적으로 계산하는 새로운 방법을 제안하였다.

외경연삭 휠 주축의 진동특성에 미치는 플랜지 결합부의 영향 (Effects of Flange Joint on the Dynamic Characteristics of the External Cylindrical Grinding Wheel Spindle)

  • 김선민;하재훈;이선규
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.118-125
    • /
    • 1999
  • In the grinding process, generally, the exciting forces with high frequency can be generated due to the wheel wear and the grinding process. As the grinding speed increases, the precise investigation about the wheel dynamic characteristics is required. Conventionally the wheel-spindle has been considered with lumped model in dynamic modeling. With this lumped model, the significant mode resulted from the shell mode of wheel can be readily ignored. This paper suggests the new analysis model which includes the shell mode of wheel in modeling the wheel-spindle assembly. Furthermore, based on the suggested model, the effects of the bolt tightening force and the taper tightening force on the dynamic properties are investigated by the finite element modal analysis and the experimental method. As a result of investigation, the shell mode vibration of wheel affects the dynamic characteristics of the spindle assembly. Also, the vibration modes of the spindle assembly are significantly affected by the joint tightening forces.

  • PDF

철도차량의 Kinematic Envelope에 관한 연구 (A Study on the Kinematic Envelope of the Railway Vehicle)

  • 양희주;이강운;박길배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.863-869
    • /
    • 2002
  • Studied in this paper was the kinematic envelope of the railway vehicle to calculate the lateral displacement using the multi-body dynamic simulation program (VAMPIRE) and the BASS 501. The lateral displacement of railway vehicle is occurred by the clearance between wheel flange and rail, the track irregularity, the property of each suspension of vehicle and the cant of track etc. The results of analysis shown that Vehicle is not interfere with subway platform in any conditions namely the tare and full load condition, the wheel wear condition and the stationary and running of vehicle.

  • PDF

탈선 매커니즘 해명을 위한 차륜/레일 접촉위치 측정 (Measurement of contact position between wheel and rail for clarification of derailment mechanism)

  • 함영삼;홍재성;이관섭;서병욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.608-612
    • /
    • 2004
  • Safety from derailment has been evaluated according to the magnitude of the derailment coefficient, which does not always ensure sufficient safety evaluation, and is not necessarily helpful in clarifying the mechanism of derailment. When wheel rolls, point of contact between wheel and rail was change continuously and flange touches with rail. Established gauge so that can measure location of contact point between wheel and rail by strain gauge. Also, wish to describe result that compose bridge circuit and execute load test.

  • PDF

Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구 (Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units)

  • 김기훈;유영면;임종순;현준수
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF