• Title/Summary/Keyword: Wheel control

Search Result 1,064, Processing Time 0.027 seconds

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

Biologically inspired modular neural control for a leg-wheel hybrid robot

  • Manoonpong, Poramate;Worgotter, Florentin;Laksanacharoen, Pudit
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.101-126
    • /
    • 2014
  • In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions are achieved by a phase switching network (PSN) module. The combination of these modules generates various locomotion patterns and a reactive obstacle avoidance behavior. The behavior is driven by sensor inputs, to which additional neural preprocessing networks are applied. The complete neural circuitry is developed and tested using a physics simulation environment. This study verifies that the neural modules can serve a general purpose regardless of the robot's specific embodiment. We also believe that our neural modules can be important components for locomotion generation in other complex robotic systems or they can serve as useful modules for other module-based neural control applications.

Thermal Characteristics of Oil-cooled In-wheel Motor in Electric Vehicles (전기자동차용 유냉식 인휠 모터의 방열 특성 연구)

  • Lim, Dong Hyun;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • Cooling the in-wheel motor in electric vehicles is critical to its performance and durability. In this study, thermal flow analysis was conducted by evaluating the thermal performance of two conventional cooling models for in-wheel motors under the continuous rating base speed condition. For conventional model #1, in which cooling oil was stagnant in the lower end of the motor, the maximum temperature of the coil was $221.7^{\circ}C$; for conventional model #2, in which cooling oil was circulated through the exit and entrance of the housing and jig, the maximum temperature of the coil was $155.4^{\circ}C$. Therefore, both models proved unsuitable for in-wheel motors since the motor control specifications limited the maximum temperature to $150^{\circ}C$.

Study on Triaxiality Velocity of COMS induced by Wheel Off-loading

  • Park, Young-Woong;Kim, Dae-Kwan;Lee, Hoon-Hee
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.3-36.3
    • /
    • 2008
  • KARI (Korea Aerospace Research Institute) is going to launch a Communication, Ocean and Meteorological Satellite (COMS) at summer of 2009. It will be first thing to be developed for a geostationary satellite through domestic technology. Of course, KARI has performed this development program with EADS Astrium in France since 2005. COMS has the non-symmetric configuration that the solar array is only attached on the south panel. Due to the configuration, momentum of satellite will be rapidly accumulated induced by solar pressure and then 3 wheels of large momentum are located on roll-yaw plane for attitude control. Therefore, to prevent the saturation of wheel momentum, wheel off-loading will be performed two times per day during 10 minutes for each one. At the moment, translation movement on 3-axes direction appears because of using thrusters. In this paper, strategy of the wheel off-loading and triaxiality which is the translation effect on 3-axes are introduced. Consequently, the result of optimized triaxiality considering the wheel off-loading strategy is summarized.

  • PDF

Application of a Brake Pressure Restriction Valve to a Motorcylce ABS (제동압력 제한밸브의 모터싸이클 ABS에의 적용)

  • 지동익;류제하;김호수;임재우;박종혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • This paper presents an of a brake pressure restriction valve to a motorcycle anti-lock brake system(ABS). In the conventional anti-lock brake system of automobiles, slip ratio as a control variable is actively controlled, which requires wheel speed sensors, ECU, and a pressure modulator. In the ABS valve that has been developed for use in motorcycles, however, the brake pressure that is close to the wheel locking pressure is preset by simple exercises and then the valve just allows to pass the wheel locking pressure and cutoff the remaining pressure. Simulation studies with a single wheel braking dynamics and lumped chassis model show that the pressure restriction valve has basic ABS functions as well as some robustness properties for the uncertain load and road conditions as well as various initial braking speeds. Field tests also show that the pressure restriction valve avoids the wheel locking effectively.

  • PDF

Aircraft Accumulator Design Study (항공기용 축압기 설계)

  • Kim, Jin-Won;Kim, Keun-Bae;Park, Jong-Hu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • Basic characteristics of wheel brake accumulator for aircraft is studied. Wheel brake accumulator maintains the braking pressure for parking mode, and also it supplies the hydraulic pressure to the wheel brake system for emergency mode. The design requirements of wheel brake accumulator are analyzed and the initial sizing is conducted. A wheel brake accumulator consists of a cylinder and a brake control module, and the basic configuration and detail components are presented. Again, structural static analysis of vessel is performed with NASTARN/PATRAN for preliminary design.

  • PDF

Determination of the Optimal Control-Response Ratio for Data Searching Through a Touchpad Placed on the Steering Wheel (스티어링 휠의 터치패드를 이용한 정보 목록 검색 시 조작 : 반응 비율에 관한 연구)

  • Kim, Jong-Seok;Jung, Eui-S.;Park, Sung-Joon;Jeong, Seong-Wook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • As the number of personal computers installed in vehicles increases, a touchpad often used in a labtop computer can be used for the control of an in-vehicle information system (IVIS). Using a touchpad to control the system allows the user to select among large amount of information with a single touch of dragging. For safety and convenience of a driver, the touchpad could be placed on a steering wheel. This research is designed to calculate the most efficient Control-Response Ratio (C/R ratio) for the menu interaction of a touchpad on a steering wheel. Since the menu pointer's rate of movement and proper C/R ratio is determined by the amount of selected information, the amount of displayed information and the movement of a menu pointer was chosen to be independent variables. The dependent variables are a user's preference and task completion time. Two factor full factorial within subject design was used 16 subjects. The investigation revealed that the amount of selected information increased with increasing C/R ratio. The movement of the pointer became slower as the amount of information increased. The best C/R ratio was calculated for each amount of information and preference regression of the user's preference was drawn accordingly. Through this research, the automobile interior designer can benefit from the guidelines suggested for the touchpad control.

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer (부하토크외란관측기를 이용한 철도모의장치의 Anti-Slip 제어)

  • Jang, Jin-Hyog;Hwang, Lak-Hun;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1064-1071
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed readhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Wheel-Railway Adhesion Characteristics Experiment Machine on Traction System (견인시스템에 대한 점착특성 시험장치)

  • 이사영;오봉환;이복구;김봉희;전지용;김길동;박현준
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.130-133
    • /
    • 1999
  • It is one of the most effective methods for improving the performance of electric railway vehicles to make better the wheel-railway adhesion characteristics. The purpose of this paper is to develop the equivalent reduction machine to experiment on the adhesion system. The experiment system makes it possible to change the wheel-rail adhesion force with various adhesion parameters, and therewith to test the adhesion control system with the reduction machine in a laboratory.

  • PDF

Development for Tire Load Control System using PLC PID function (PLC의 PID 제어에 의한 자동차용 타이어 하중제어에 관한 연구)

  • Lee, Ki-Seong;Jeong, Tae-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2352-2354
    • /
    • 2003
  • An apparatus and method for imposing a desired average radial force on tire by calculating the current average force between the tire and load wheel based on the average radial force and radial distance between the tire load wheel over the last previous complete revolution of the tire, the spring constant of the tire and the current radial distance between the tire and the load wheel.

  • PDF