• Title/Summary/Keyword: Wheel Tread

Search Result 70, Processing Time 0.035 seconds

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

A Study on Relationship between Curving Noise and Wheel Wear in Seoul Subway System (지하철 곡선부소음과 차륜 마모와의 관계에 관한 연구)

  • You, Won-Hee;Hur, Hyun-Moo;Koh, Hyo-In;Park, Joon-Hyuk;Choi, Yong-Woon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.85-93
    • /
    • 2009
  • There are many curves in Seoul subway system. Therefore, the noise from subway system in curved line gives displeasure to passenger. The subway noise in curved line is affected not only by rail condition but also wheel condition and dynamic characteristics. The railway curving noise can be divided into 2 categories. The first is the noise due to stick-slip between wheel tread and rail head, and the second is one by wheel flange contact on rail side. Because of these phenomena - stick-slip and wheel flange contact - wheels are worn seriously. In this study the curving noise was reviewed by using eigen-mode of wheel and waterfall plot which shows noise level in time-frequency domain. And also those were reviewed in viewpoint of stick-slip noise and wheel flange contact noise. Finally, the relationship between curving noise and wheel wear was studied.

Dynamic Characteristics of the KTX on Wheel Conicity (차륜 답면형상에 따른 KTX의 동특성 검토)

  • Chang Jong-Ki;Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.22-27
    • /
    • 2003
  • The running safety of the rolling stock depends on the design characteristics and the contact condition between wheel and railway. In this study, the effect of the conicity of wheel tread on the running safety is analyzed. The modal analysis results in $0.5\~0.6Hz$ natural frequency with lateral modes. However, the frequency analysis for the running simulation shows the frequency components near 1Hz. The running simulation shows that the KTX with GV40 wheel has less lateral vibration than that of XP55 as the KTX goes higher speed.

  • PDF

Online railway wheel defect detection under varying running-speed conditions by multi-kernel relevance vector machine

  • Wei, Yuan-Hao;Wang, You-Wu;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.303-315
    • /
    • 2022
  • The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.

Vibration Analysis of Automobile Tire Due to Road Impact (노면으로부터 충격을 받는 자동차 타이어의 진동해석)

  • 이태근;김병삼
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.505-511
    • /
    • 2003
  • As the technique of automobile industry is being advanced, the advancement of vehicle ride is being required. In order to achieve this purpose, the study on the vibration which are produced by moving vehicle is carried out actively. In order to analysis, the tire vibration characteristics for passing over a cleat, the tire is modeled with 7-DOFs (degree of freedom). The model is verified against simulations and experiments. The effects of proposed tire design parameters such as the tire tread rubber, tread ring, apex are considered. According to the results of analysis, the tire design parameters that can reduce the tire and wheel vibration quantity are conducted.

A Study on Fatigue Crack Growth of an EMU Wheel due to Repeated Rolling Contacts (전동차 차륜의 반복 구름 접촉에 의한 피로균열 전파에 관한 연구)

  • Kim Ho-Kyung;Lee Duk Gyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.595-600
    • /
    • 2004
  • The EMU wheel is one of the most important component for the vehicle safety. For the tensile, fracture toughness and crack propagation tests, several specimens were collected from actual wheels. FEM ,analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip under the stress ($P_{max}$ = 911.5 MPa) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one.

  • PDF

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch (접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향)

  • Kim, Yong-Woo;Nam, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.

Estimation of Individual Vehicle Speed Using Single Sensor Configurations (단일 센서(Single Sensor)를 활용한 차량속도 추정에 관한 연구)

  • Oh, Ju-Sam;Kim, Jong-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.461-467
    • /
    • 2006
  • To detect individual vehicular speed, double loop detection technique has been widely used. This paper investigates four methodologies to measure individual speed using only a single loop sensor in a traveling lane. Two methods developed earlier include estimating the speed by means of (Case 1) the slop of inductance wave form generated by the sensor and (Case 2) the average vehicle lengths. Two other methods are newly developed through this study, which are estimations by measuring (Case 3) the mean of wheelbases using the sensor installed traversal to the traveling lane and (Case 4) the mean of wheel tracks by the sensor installed diagonally to the traveling lane. These four methodologies were field-tested and their accuracy of speed output was compared statistically. This study used Equality Coefficient and Mean Absolute Percentage Error for the assessment. It was found that the method (Case 1) was best accurate, followed by method (Case 4), (Case 2), and (Case 3).

Evaluation Technology for the Improvement of Brake Performance and Friction Coefficient of Tread Brake Shoe (답면 브레이크 슈의 마찰계수와 제동성능향상을 위한 평가기술)

  • Choi Kyung-Jin;Lee Dong-Hyung;Lee hisung;Song Mun-Suk;Shin You-Jung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.377-382
    • /
    • 2003
  • In tread braking of freight cars, braking force is produced by the friction between the wheel and the braking shoe. Friction coefficients such as the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and weighted, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of braking time and temperature. This study presented an experimental evaluation method to secure optimum braking performance by keeping safe braking effect and braking distance by the friction coefficient of the brake shoe of the freight cars.

  • PDF