• Title/Summary/Keyword: Wheel Loading

Search Result 178, Processing Time 0.025 seconds

Determination of Proper Loading Speed for Deformation Strength Test of Asphalt Concretes (아스팔트 콘크리트 변형강도 시험에서의 적정 하중재하속도 선정 연구)

  • Cho, Byung-J.;Park, Tae-W.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.225-234
    • /
    • 2008
  • This study was carried out to select proper loading speed for deformation strength ($S_D$) of asphalt mixtures. Kim test using loading head of diameter(40mm) with radius(10mm) was conducted to measure $S_D$ in different loading speed (10mm/min, 30mm/min, 50mm/min, 70mm/min) and wheel tracking test was also conducted. The regression analyses between the So values and WT results were carried out by loading speeds. Higher $S_D$ was observed as increasing loading speed. This means that loading speed is a high influencing factor on $S_D$. The loading speed of 30mm/min was found as an optimum for better correlation with WT results than any other speeds from the regression analysis between $S_D$ and wheel tracking test results. $S_D$ value measured at other loading speed than 30mm/min has to apply the conversion coefficients.

  • PDF

A Study on the Plain Grinding Characteristics of Carbon Fiber Epoxy Composite with the GC Grinding Wheel (GC 연삭숫돌을 이용한 탄소섬유 에폭시 복합재료의 평면 연삭특성에 관한 연구)

  • 한흥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-47
    • /
    • 2000
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high specific modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles , spindles of machine tools, motor base, bearing mount for tool up and manufacturing. The molded composite machine elements are not usually accurate enough for mechanical machine elements, which require turning drilling , cutting and grinding. The experiment are surface grinding wheel GC60 to the carbon fiber epoxy composite specimen with respect to staking angle [0]nT , [45]nT, [90]nT on the CNC grinding machine. In this paper, the surface grinding characteristics of composite plate, which are surveyed experimentally and analytically with respect to the grinding force, surface roughness and wheel loading according to the variable depth of cut, wheel velocity and table feed rate are investigated.

  • PDF

Development of Discontinuous Grinding Wheel with Multi-Porous Grooves(I) -Design, Manufacture and Grinding Characteristics of Discontinuous Grinding Wheel- (다기공홈형 단속지석의 개발에 관한 연구(I) - 단속지석의 설계, 제작 및 연삭특성 -)

  • Kim, J.D.;Jin, D.X.;Lee, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.52-59
    • /
    • 1996
  • Conventionally, grinding of stainless steel, aluminium ally, copper alloy, and titanum alloy are difficult to obtain the high quality finish, because they have the mechanical properties such as low hardness, high toughness which result in the loading of wheel and the poor surface finish. Inorder to perform the grinding operations for these sorts of materials easily, the discontinuous grinding wheel with multi-porous grooves has newly been developed. The multi-porous grooves were formed during wheel production. This discontinous grinding wheel increases the grinding performance. It is desirable to use the discontinuous grinding wheel when grinding materials wiht high efficiency and accuracy which is impossible by conventional wheels. In this paper, the constructing and manufacturing method of grinding wheel with multi-proous grooves are explained, and the grinding charateristics of discontinuous grinding wheel are also illustrate.

  • PDF

Development of Discontinuous Grinding Wheel with Multi-Porous Grooves (다기공홈형 단속연삭지석의 개발에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.108-113
    • /
    • 1996
  • Conventionally, grinding of stainless steel, aluminium alloy, copper alloy, and titanum alloy is difficult due to the mechanical properties such as low hardness, high toughness which result in the loading of wheel and the poor surface finish. In order to grind this sort of materials easily, discontinuous grinding wheel with multi-porous grooves was newly developed. The multi-porous grooves were formed during wheel production. This discontinuous grinding wheel drastically increases the grinding performance. It is desirable to use the discontinuous grinding wheel when grinding materials with high efficiency and accuracy which is impossible by conventional wheels. In this paper, the construction and manufacturing method of grinding wheel with multi-porous grooves are explained. The grinding charateristics of discontinuous grinding wheel was also illustrated.

  • PDF

Determination of decision of wheel life using grinding power (연삭동력을 이용한 숫돌수명 판정)

  • 이상태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.204-209
    • /
    • 1999
  • The dressing time monitoring in cylindrical grinding is very important with respect to machining efficiency. Therefore, the purpose of this paper is to determine the wheel life by monitoring behavior of grinding power for Wa, 19A and GC. For this purpose, we investigated indirectly the attritious wear of grain edge, the loading of grinding wheel and the breakage of grain through the grinding power and the surface roughness under various grinding conditions. From obtained the results, the relationship between the wheel life and the average sectional chip area is examined to guide for the determination of dressing time.

  • PDF

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

The Structural and Frequency Response Analysis for the Bogie of the Rubber Wheel-type AGT (고무차륜형식 경전철(AGT) 대차의 구조해석 및 주파수 응답해석)

  • 변상윤;유형선;윤성호
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.558-565
    • /
    • 1999
  • Rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other and passenger loads. This paper deals with the statics analysis for two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamics analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, Ⅰ-DEAS and NASTRAN show that maximum stresses do not exceed the yielding level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except the case of a lateral loading. It is also observed that the steering type shows a be stiffened. It is strongly anticipated that vibrational fatigue analysis should be carried out under realistic loading conditions closely matching to situations such as running surface and lateral clearances along the guideway.

  • PDF

Vaned Wheel Atomization of CWM (Vaned Wheel Atomizer에 의한 CWM 미립화)

  • 김성준;김용선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.974-982
    • /
    • 1992
  • The atomizations of CWM slurry and water are done by a wheel atomizer which is designed and manufactured for this experiment. The variables of the experiment are the angle of vane, aspect ratio, particle loading and the mean size of coal particle distribution. The main purposes of the experiment are to know how the angle of vane and aspect ratio of vane influence the size distribution of CWM droplets. The experimental results say there are no appreciable effects on the mean size of CWM droplets from the change of loading of coal prticles in slurry. The mean size of coal particle in slurry, however, influence quite strongly the mean size of CWM droplets. The mean size of CWM droplets is quite strongly affected by the angle of vane. The size distribution of CWM droplets is controllable by the change of aspect ratio.

An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis (윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구)

  • Kim, Tae Woo;Choi, Ji Young;Lee, Hyun Jong;Baek, Jongeun;Ohm, Byung Sik
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.