• Title/Summary/Keyword: Wheel Control

Search Result 1,063, Processing Time 0.03 seconds

Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System (능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

The Characteristic Analysis of the Load-sensitive Hydraulic Control System for Closed Center Type of a Wheel Loader (휠 로더용 폐회로형 부하 감응 유압 제어 시스템의 특성 해석)

  • Lee, Seung-Hyun;Song, Chang-Seop;Chung, Chun-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.934-942
    • /
    • 2007
  • In this study, the characteristics of the load-sensitive hydraulic control system for closed center type of a wheel loader were analyzed using developed analysis program based on Amesim tool. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the system parameter effects on the controllable region and the pump pressure and load pressure variations were studied. The results were compared with the experimental ones. The results and discussions of the present paper could aid in the design of a load-sensitive hydraulic control system for closed center type.

Building the Test Platform for All Wheel Steering Control System of Bi-Modal Tram (저상 굴절차량 조향 시스템 전자제어장치 테스트 플랫폼 구축)

  • Jo, Chang-Yeon;Lee, Soo-Ho;Moon, Kyung-Ho;Park, Tae-Won;Chung, Ki-Hyun;Choi, Kyung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1616-1625
    • /
    • 2007
  • Recently, embedded systems role as control systems instead of mechanical control systems in many parts of vehicles. In cases that embedded systems are used controling the electric signal, it is important to secure the reliability of a software within embedded systems. In this paper, the test platform for securing the reliability and real-time characteristic of the embedded system that controls electric signal of All Wheel Steering Control System in a Bi-modal tram is proposed. The platform is built on a HIL (Hardware In the Loop) architecture. Through the HIL platform, various vehicle conditions, driver activities and environment conditions can be successfully tested without actual driving, hence improving the reliability of the embedded system for the All Wheel Steering Control System.

  • PDF

Implementation and Balancing Control of One-Wheel Robot, GYROBO (외바퀴 구동 GYROBO의 제작 및 밸런싱 제어 구현)

  • Kim, Pil-Kyo;Park, Junehyung;Ha, Min Soo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.501-507
    • /
    • 2013
  • This paper presents the development and balancing control of GYROBO, a one wheeled mobile robot system. GYROBO is a disc type one wheel mobile robot that has three actuators, a drive motor, a spin motor, and a tilt motor. The dynamics and kinematics of GYROBO are analyzed, and simulation studies conducted. A one-wheeled robot, GYROBO is built and its balancing control is performed. Experimental studies of GYROBO's balancing abilities are conducted to demonstrate the gyroscopic effects generated by the spin and tilt angles of a flywheel.

Motion control of a wheel-chair robot using CDM (계수도법을 이용한 휠체어 로봇의 자세제어)

  • Park, Sung-Jin;Jeong, Sang-Chul;Kim, Gwan-Hyung;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2046-2048
    • /
    • 2002
  • In this paper, I designed the inverter pendulum controller to controll the position of a wheel-chair. I used coefficient diagram method (CDM) to design the controller. The CDM is available, because it can make an engineer know all about the characteristic, stability, response time and robustness, of closed loop system. Writing this paper, I simulated the controller to know wheather is can controll the position of wheel-chair using the theorem of inverter pandulum controll, and I identified the usefulness of it.

  • PDF

Antl-Lock Brake System Control for Buses Based on Fuzzy Logic and a Sliding-Mode Observer

  • Park, Jong-Hyeon;Kim, Dong-Hee;Kim, Yong-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1398-1407
    • /
    • 2001
  • In this paper an anti-lock brake system (ABS) for commercial buses is proposed based on a fuzzy-logic controller and a sliding-mode observer of the vehicle speed. The brake controller generates pulse width modulated (PWM) control inputs to the solenoid valve of each brake, as a function of the estimated wheel slip ratio. PWM control inputs at the brakes significantly reduce chattering in the brake system compared with conventional on-off control inputs. The sliding-mode observer estimates the vehicle speed with measurements of wheel speed, which is then sed to compute the wheel slip ratio. The effectiveness of the proposed control algorithm is validated by a series of computer simulations of bus driving, where the 14-DOF bus model is used.

  • PDF

Impaired Voluntary Wheel Running Behavior in the Unilateral 6-Hydroxydopamine Rat Model of Parkinson's Disease

  • Pan, Qi;Zhang, Wangming;Wang, Jinyan;Luo, Fei;Chang, Jingyu;Xu, Ruxiang
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • Objective : The aim of this study was to investigate voluntary wheel running behavior in the unilateral 6-hydroxydopamine (6-OHDA) rat model. Methods : Male Sprague-Dawley rats were assigned to 2 groups : 6-OHDA group (n=17) and control group (n=8). The unilateral 6-OHDA rat model was induced by injection of 6-OHDA into unilateral medial forebrain bundle using a stereotaxic instrument. Voluntary wheel running activity was assessed per day in successfully lesioned rats (n=10) and control rats. Each behavioral test lasted an hour. The following parameters were investigated during behavioral tests : the number of running bouts, the distance moved in the wheel, average peak speed in running bouts and average duration from the running start to the peak speed. Results : The number of running bouts and the distance moved in the wheel were significantly decreased in successfully lesioned rats compared with control rats. In addition, average peak speed in running bouts was decreased, and average duration from the running start to the peak speed was increased in lesioned animals, which might indicate motor deficits in these rats. These behavioral changes were still observed 42 days after lesion. Conclusion : Voluntary wheel running behavior is impaired in the unilateral 6-OHDA rat model and may represent a useful tool to quantify motor deficits in this model.

Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque (실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발)

  • Son, Seungwan;Kim, Kiyoung;Cha, Suk Won;Lim, Won Sik;Kim, Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

A Study on Characteristics of Driving Control of Crane (크레인의 구동제어 특성에 관한 연구)

  • 이형우;박찬훈;김두형;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.545-550
    • /
    • 2001
  • This paper studied on the lateral motion and yaw motion of the gantry crane that is used for the automated container terminal. Though several problems are occurred in driving of the gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operator. There are two types, cone and flat type in driving wheel shape. In cone type, the lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of two driving wheels are derived. Then, we investigate the driving characteristics of gantry crane. In this study, the proposed controller, based on Model Based Controller, is used to control the lateral displacement and yaw angle of the gantry crane. And the availability of the proposed controller is showed through the comparison with the result of the proposed controller and PD controller. The simulation results of the driving mechanism, using the Runge-Kutta Method that is one of the numerical analysis methods, are presented in this paper.

  • PDF