• Title/Summary/Keyword: Wheat Gluten

Search Result 182, Processing Time 0.023 seconds

Effects of Gluten and Soybean Polypeptides on Textural, Rheological, and Rehydration Properties of Instant Fried Noodles

  • Ahn, Chang-Won;Nam, Hee-Sop;Shin, Jae-Kil;Kim, Jae-Hoon;Hwan, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.698-703
    • /
    • 2006
  • We investigated how the addition of polypeptides to instant fried noodle dough affects the dough properties, starch gelatinization, and textural properties of cup-type instant fried noodles. After comparing farinograph results of 100% wheat flour with 1% wheat flour substituted with gluten, there was a small difference in the mechanical dough properties. However, in the case of 1% wheat flour substituted with gluten peptides, the dough development time increased, dough stability decreased, and weakness increased. On the other hand, when gluten or gluten peptides were added, starch gelatinization did not change significantly. At the steaming stage, substitution with gluten peptides or soybean peptides markedly changed the molecular weight distributions of extractable polypeptides. Especially in the case of wheat flour substituted with 1% gluten peptides, the relative portion of low Mw extractable polypeptides (2.5-50 kDa) decreased more compared to a control. Also, the hardness and chewiness decreased in cooked cup-type instant fried noodles containing gluten peptides. This suggests that the addition of gluten peptides can reduce the rehydration time of cup-type instant fried noodles.

Genomic and evolutionary analysis with gluten proteins of major food crops in the Triticeae tribe

  • Kim, Sang Heon;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.86-86
    • /
    • 2017
  • Prolamins are the main seed storage proteins in cereals. Gluten proteins seem to be prolamins because their primary structure have the meaningful quantity of proline and glutamine amino acid residues. Gluten proteins are found in crops such as wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale) which are major food crops in the Triticeae tribe. Glutenin and gliadin, hordein, and secalin are typical gluten proteins found in wheat, barley, and rye, respectively. Gluten affect grain quality so that many researches, such as isolation or characterization of their genes, have been carried out. To improve the quality of grains in the Triticeae tribe, it is necessary to understand the relationship within their gluten proteins and their evolutionary changes. The sequences of nucleotides and amino acids of gluten protein including glutenins, gliadins, hordeins, and secalins were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/) and Uniprot (http://www.uniprot.org/). The sequence analysis and the phylogenetic analysis of gluten proteins were performed with various website tools. The results demonstrated that gluten proteins were grouped with their homology and were mostly corresponded with the previous reports. However, some genes were moved, duplicated, or disappeared as evolutionary process. The obtained data will encourage the breeding programs of wheat, barley, rye, and other crops in the Triticeae tribe.

  • PDF

Apparent Amino Acid and Energy Digestibilities of Common Feed Ingredients for Flounder Paralichthys olivaceus

  • Lee, Sang-Min;Seo, Joo-Young;Choi, Kyoung-Hyun;Kim, Kyoung-Duck
    • Journal of Aquaculture
    • /
    • v.21 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Flounder were fed a reference diet and test diets containing various feed ingredients: mackerel fish meal, meat meal, soybean meal, wheat flour, wheat gluten, corn gluten meal and brewer's yeast. Apparent digestibility was determined using a reference diet with 0.5% chromic oxide indicator and test diets contained 70% reference diet and 30% of the feed ingredient being evaluated. Apparent digestibility coefficients for amino acid and energy in the reference and test diets were determined, and digestibility coefficients for the test ingredients were calculated based on differences in the digestibility of test diets relative to the reference diet. The fish averaging 300 g were held in 2000 L tanks at a density of 20 fish per tank. Feces were collected from three replicate groups of fish using a fecal collection column attached to fish rearing tank. Apparent total amino acids digestibilities(90-95%) of mackerel fish meal, soybean meal, wheat gluten, corn gluten meal and brewer's yeast were higher than those of meat meal and wheat flour(P<0.05). Apparent energy digestibilities(86-98%) of mackerel fish meal, meat meal, soybean meal, wheat gluten and corn gluten meal were significantly higher(P<0.05) than those of wheat flour and brewer's yeast. These results provide useful information about nutrient and energy utilization for flounder.

Effect of Vital Wheat Gluten on the Quality Characteristics of the Dough Frozen after 1st Fermentation (활성글루텐이 1차발효 후 냉동한 생지의 품질특성에 미치는 영향)

  • Choi, Doo-Ri;Lee, Jeong-Hoon;Yoon, Yoh-Chang;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Frozen dough made by sponge and dough method using sweet dough formula was quickly frozen at $-40^{\circ}C$ and stored for 8 weeks at $-20^{\circ}C$. Effects of vital wheat gluten on number of yeast cells, bread volume, specific loaf volume, hardness, and sensory properties of bread were investigated. Dough added with 4% vital wheat gluten showed higher yeast cell survival rate during freeze storage and larger specific loaf volume than other doughs. Hardness value increased with increasing amount of vital wheat gluten added, whereas, in frozen dough stored more than 4 weeks, dough added with 2% vital wheat gluten showed lower hardness value than others. Bread made with 4% vital wheat gluten showed highest sensory score.

Effects of Wheat gluten and Steaming Treatment on Water Stability of Extruded Shrimp Feed (소맥글루텐과 스팀 처리가 새우 사료의 수중 안정성에 미치는 효과)

  • 김재식
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.282-288
    • /
    • 2004
  • This study was carried out to improve water thestability of extruded shrimp feed. Three types of extruded shrimp feeds which were control diet (no steaming, no wheat gluten), steaming treated diet and steaming treated diet containing wheat gluten were prepared to using the pilot scale extruder. Comparing with the water stability values of two types of extruded shrimp feed, Steamed shrimp feed containing 4% (w/w) wheat gluten showed on I after 48 h was better than the control diet (no steaming, no wheat gluten) of which water stability value was 4. Also Penaeus chinensis fed on the steamed feed showed good body weight gain (237%) and feed efficiency (16.7%) compared with body weight gain (151%) and feed efficiency (12.8%) of control diet in the feeding trial for 50 days. Briefly, the extruded shrimp feed has more efficient water stability on below I, and recommendable wheat gluten content and steaming time were 4∼8% (w/w) and 5∼10 minutes.

Studies on the Substitution of Raw Material for Soy Sauce Part IV. Use of Wheat gluten (간장양조용 원료대체에 관한 연구(제4보) 소맥글루텐의 이용)

  • 이제문;안순복;김유삼;홍윤명;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.2
    • /
    • pp.89-93
    • /
    • 1974
  • The various conditions of substituting wheat gluten for the bean, one of the raw materials for soy sauce manufacture, was studied by measuring the activities of the amylase and proteolytic enzyme of koji. It was found that substitute wheat gluten for up to 60% of bean content (30% of the total bran and wheat content) yielded good quality of soy sauce. By using more than 30% of wheat gluten the availability of nitrogen of raw materials was decreased. This was attributed to the low enzyme activity in koji containing more than 30% wheat gluten.

  • PDF

Vital Wheat Gluten by Hot Air Drying (Vital Wheat Gluten 의 제조)

  • Suh, Hong-Kyl
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1973
  • Dry vital wheat gluten was prepared by atmospheric hot air drying of wet gluten blended with salt and acid. Products of good quality were obtained over a wide range of conditions, as shown by dough expansion, nitrogen solubility, rehydration test, and easinass of smashing and drying after blending. Gluten of good quality was produced by atmospheric hot air drying at $60^{\circ}C$, after blending wet gluten with salt in the range of 5 to 10% and acid, preferably, hydrochloric, at 0.12%.

  • PDF

Reduction of Allergenicity of Wheat Flour by Enzyme Hydrolysis (효소 분해에 의한 밀가루의 항원성 저감화)

  • Park, Ju-Yeon;Ahn, Jeung-Yeub;Hong, Hee-Ok;Hahn, Young-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.152-157
    • /
    • 2004
  • Gluten was extracted from domestic wheat flour using UTH buffer (4 M urea in 0.1 M Tris-HCl, pH 8.6) and validated by SDS-PAGE analysis for production of wheat flour products with reduced gluten content.. Anti-gluten polyclonal antibody was made by administering extracted gluten fraction on animal model. Anti-gluten serum titer of extracted gluten fraction was evaluated by ELISA, and that of antibody titer according to administration period. Anti-gluten sera were used for ELISA and immunoblot analysis before and after hydrolysis of gluten fraction at optimal pH and temperature condition for each protease. Gluten fraction separated by SDS-PAGE showed several bands covering 75 to 10 kDa, in which anti-gluten sera were 25, 34, and 45 kDa. Enzyme hydrolysis of gluten fraction revealed protein band sizes to be lower than 15 kDa. Content of pretense from bovine pancreas (b.p. protease) for gluten hydrolysis was estimated as 1 mg in 10 mL gluten fraction extracted for 4 hr.

Effect of Sucrose and Gluten on Glass Transition, Gelatinization, and Retrogradation of Wheat Starch (밀전분의 유리전이와 호화 및 노화에 대한 sucrose와 글루텐의 영향)

  • Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.288-293
    • /
    • 2004
  • Differential scanning calorimetry (DSC) was used to study effects of sucrose and gluten on wheat starch glass transition, gelatinization, and retrogradation. Glass transition temperature ($T_{g}$) of wheat starch decreased as the ratio of sucrose or gluten to starch increased. Both peak temperature ($T_{G}$) and enthalpy values of gelatinization endotherm increased or decreased with increasing ratio of sucrose or gluten, respectively. Wheat starch gel with no sucrose and gluten recrystallized up to 4 weeks of storage at $4^{\circ}C$, whereas those with sucrose and gluten completed recrystallization within 1 week. Both wheat starch gels with no sucrose and gluten, and those with sucrose and gluten at storage temperature of $32^{\circ}C$ recrystallized up to 4 weeks, with wheat starch-sucrose-gluten (1 : 0.5 : 0.12) system, which had highest ratios of gluten and sucrose to starch, showing lowest recrystallization. Nucleation and propagation rates of starch gel recrystallization based on polymer crystallization principles can be converted into peak width (${\delta}T$) and peak temperature ($T_{R}$) of retrogradative endotherm by DSC, because higher nucleation rate at storage temperature of $4^{\circ}C$ close to $T_{g}$ showed higher ${\delta}T$, whereas higher propagation rate at $32^{\circ}C$ (close to $T_{G}$) had higher $T_{R}$.

Chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia

  • Natalia S. Fanelli;Leidy J. Torres-Mendoza;Jerubella J. Abelilla;Hans H. Stein
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.105-115
    • /
    • 2024
  • Objective: A study was conducted to determine the chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia, and to test the hypothesis that production area or production methods can impact the chemical composition of wheat co-products. Methods: Samples included seven barley grains, two malt barley rootlets, one corn gluten feed, one corn gluten meal, one corn bran, eight wheat brans, one wheat mill mix, and four wheat pollards. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid hydrolyzed ether extract, ash, minerals, starch, and insoluble dietary fiber and soluble dietary fiber. Malt barley rootlets and wheat co-products were also analyzed for sugars. Results: Chemical composition of barley, malt barley rootlets, and corn co-products were in general similar across countries. Wheat pollard had greater (p<0.05) concentrations of tryptophan, magnesium, and potassium compared with wheat bran, whereas wheat bran had greater (p<0.05) concentration of copper than wheat pollard. There were no differences in chemical composition between wheat bran produced in Australia and wheat bran produced in Thailand. Conclusion: Intact barley contains more starch, but fewer AA, than grain co-products. There were only few differences in the composition of wheat bran and wheat pollard, indicating that the two ingredients are similar, but with different names. However, corn gluten meal contains more protein and less fiber than corn bran.