• 제목/요약/키워드: Whale Optimization Technique

검색결과 3건 처리시간 0.02초

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.