• Title/Summary/Keyword: Wetting-drying

Search Result 197, Processing Time 0.026 seconds

A Study on Solderability by Lasting time of PCB in Pre-Baking (기판의 건조시간에 따른 Solderability에 관한 연구)

  • 신규현;최명기;정재필;서창제
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 1999
  • This paper investigated optimum drying time of PCB and the relationship between humidity in PCB and solderability. As experimental results, soldering was improved with increasing drying time. The wetting time of a dry specimen was shorter about 0.2 seconds than that of a wet specimen. The wetting force was Increased by 2~4mN after drying the wet specimen. When PCB was dried over 30 minute, solder defects and tensile strength of soldered joints was optimized. Effects of drying tome of PCB on the soldering, wetting curve, soldered shape, solder ball, and tensile strength, were investigated.

  • PDF

Strength Variation of Cemented Sand Due to Wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.303-311
    • /
    • 2009
  • In this study, weakly cemented sand was cured at air dry condition with different periods (3, 7, 14, 21, 28 days) and its unconfined compressive strength was evaluated. As a result, the strength of specimens with low cement ratios such as 4 and 8% increases until 7 days curing but, after 7 days, their strength continuously decreases. The strength of specimens with relatively high cement ratios such as 12 and 16% increases up to 7 days curing and then stays almost constant until 21 days. After 21 days curing, their strength suddenly dropped down, which is much lower than the strength of 3 days curing specimen. A cemented sand and gravel called CSG, which is highly permeable, could be exposed to repetitive drying and wetting conditions due to rainfall or groundwater table change during curing. In this study, the weakly cemented sand is exposed to repetitive drying and wetting and then its unconfined compressive strength was evaluated. As a result, the strength of a specimen with 27 days drying condition following 1 day wetting was at maximum 35% lower than the one cured under 28 days drying. The strength degradation due to wetting decreases as a cement ratio increases. However, the strength of a specimen with repetitive drying and wetting increases as the number of wetting increases until 3 cycles. After 3 cycles of drying and wetting, the rate of strength increase decreases due to an insufficient water for hydration or stays constant. If the sufficient water supply is provided to cemented sand during curing, the target or design strength increase can be achieved. Otherwise, the strength degradation due to wetting should be considered at the design stage.

Landslide Analysis Using the Wetting-Drying Process-Based Soil-Water Characteristic Curve and Field Monitoring Data (현장 함수비 모니터링과 습윤-건조 함수특성곡선을 이용한 산사태 취약성 분석)

  • Lee, Seong-Cheol;Hong, Moon-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.13-26
    • /
    • 2023
  • This study examined the soil-water characteristic curve (SWCC), considering the volume change, using wetting curves on the field monitoring data of a wireless sensor network. Special attention was given to evaluating the landslide vulnerability by deriving a matric suction suitable for the actual site during the wetting process. Laboratory drying SWCC and shrinkage laboratory tests were used to perform the combined analysis of landslide and debris flow. The results showed that the safety factor of the wetting curve, considering the volume change of soil, was lower than that of the drying curve. As a result of numerical analyses of the debris flow simulation, more debris flow occurred in the wetting curve than in the drying curve. It was also found that the landslide analysis with the drying curve tends to overestimate the actual safety factor with the in situ wetting curve. Finally, it is confirmed that calculating the matric suction through SWCC considering the volume change is more appropriate and reasonable for the field landslide analysis.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Development of Grid Reconstruction Method to Simulate Drying/Wetting in Natural Rivers (II): Model Application and Comparison (자연하천에서 마름/젖음 처리를 위한 격자재구성 기법의 개발 (II): 모형의 적용 및 비교.검토)

  • Choi, Seung-Yong;Kim, Sang-Ho;Hwang, Jae-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.989-1004
    • /
    • 2009
  • The objective of this study is to examine validation of Grid Reconstruction Method, which is developed to simulate drying/wetting in complex natural rivers with wetting and drying domain areas. To verify application of the developed model, the model was applied to natural rivers with wetting and drying domain areas such as Han river and Nakdong river. The simulation results have shown good agreements with observed data and the results for the developed model were more accurate and improved stability of numerical computation than those of RMA-2 model. If the analysis of contaminant advection-diffusion and sediment transport are performed with the study results, the results can be effectively applied to river flow analysis and ecological hydraulics.

Moisture distribution in concrete subjected to rain induced wetting-drying

  • Sarkar, Kaustav;Bhattacharjee, Bishwajit
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.635-656
    • /
    • 2014
  • A rational estimation of moisture distribution in structural concrete is vital for predicting the possible extent and rate of progression of impending degradation processes. The paper proposes a numerical scheme for analysing the evolution of moisture distribution in concrete subjected to wetting-drying exposure caused by intermittent periods of rainfall. The proposed paradigm is based on the stage wise implementation of non-linear finite element (FE) analysis, with each stage representing a distinct phase of a typical wet-dry cycle. The associated boundary conditions have been constituted to realize the influence of various meteorological elements such as rain, wind, relative humidity and temperature on the exposed concrete surface. The reliability of the developed scheme has been demonstrated through its application for the simulation of experimentally recorded moisture profiles reported in published literature. A sensitivity analysis has also been carried out to study the influence of critical material properties on simulated results. The proposed scheme is vital to the service life modelling of concrete structures in tropical climates which largely remain exposed to the action of alternating rains.

An Experimental Study on the Penetration of Chloride Ions to Concrete Subjected to Wetting and Drying Conditions (건습반복을 받는 콘크리트의 염소이온 침투에 관한 실험적 연구)

  • Kim Eun-Kyum;Choi Young-Kyu;Kim Seung-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.838-841
    • /
    • 2004
  • This paper presents the experimental results on the penetration of chloride. ions to ordinary portland cement concrete which is subjected to 2 different artificial environments; consecutive digestion, wetting at $3\%$ NaCl for 1 day and then drying at $40^{\circ}C$ oven for 4 days. The water-cement ratio was $35\%,\;45\%,\;55\%$. Test results showed that the intrusion depth and concentration of chloride ions penetrated into concrete in repeated wetting-drying environments were respectively deeper and higher than those of consecutive digestion environment. The penetration of chloride ions deeply depend on the effect of water to cement ratio.

  • PDF

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.

Determination of Moisture Index in Korea

  • Ra, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.301-308
    • /
    • 2018
  • This study aimed to obtain basic climate information for effective moisture control in wood in Korea. Two independent climate indexes, namely drying index (DI) and wetting index (WI), were determined using hourly weather data for 82 locations recorded from 2009 to 2017. These data were collected from the Korea Meteorological Administration (KMA). Hourly data had not been measured prior to 2009. DI and WI revealed that all regions were cold and wet except Baengnyeongdo, which was classified as a cold and dry region. DI and WI were normalized assuming that wetting and drying were equally important phenomena. Then, the normalized indexes were combined into moisture index (MI) to rank the moisture loading of the regions. The MIs showed that Seogwipo had the greatest moisture loading in Korea, followed by Seongsan, Namhae, and Geoje. The MIs suggested that Korea exhibited severe moisture loading. Further studies are required to investigate the relation between MI and moisture content on wood surfaces from a wood maintenance point of view.

A Simple Method for Estimating Wetting Path of Soil Water Characteristic Curve on Unsaturated Soils (불포화지반의 습윤과정 함수특성곡선 추정을 위한 간편법)

  • Park, Hyun-Su;Kim, Byeong-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.37-48
    • /
    • 2017
  • Soil-water characteristic curve (SWCC) has been widely used to estimate the shear strength and coefficient of permeability for unsaturated soils. In general, it is divided into the drying path in which the water is discharged and the wetting path in which the water is permeated, and it has a hysteresis indicating different suctions at the same volumetric water content. In reality the field behavior of unsaturated soils is much closer to the wetting path during the infiltration. The drying path has been practically used for various analyses because obtaining the wetting path takes longer than the drying path. Although many approaches for estimating wetting path have been studied till now, these are complex and do not fit well. Therefore, a simple method for estimating wetting path based on empirical approach in this study is proposed in unsaturated soils, and a feasibility study is conducted as well.