• Title/Summary/Keyword: Wetting angles

Search Result 53, Processing Time 0.022 seconds

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl;Hwang, Min-Je;Shim, Seung-Woo;Kim, Tae-Chul;Kim, Jong-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1241-1248
    • /
    • 2018
  • The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

Electrowetting of a droplet under an AC Electric Fields (교류전압 하에서의 액적의 전기습윤현상)

  • Hong, Jin-Seok;Ko, Sung-Hee;Kang, Kwan-Hyung;Kang, In-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.175-176
    • /
    • 2006
  • Electrowetting is prevailing for its various applicability on lap-on-a-chip, and MEMS devices, such as a pump, lens, micro-actuator in the micro-TAS technology. In the usual electrowetting, an AC power is preferred to DC practically. The AC electric field delays the contact angle-saturation, decreases the hysterisis, and is more stable in the view point of dielectric strength. But researches for AC electric field on electrowetting have not been reported very much yet. The different effect of AC on the electrowetting system, especially the effect of a frequency needs to be understood more concretely. In this work, the usual system for electrowetting, water droplet on the dielectric coated electrode (EWOD) is analyzed. Experimental study on the response of contact angles on input frequencies is performed. The simple circuit-model for EWOD system is considered to explain the experimental results. For more concrete understanding, the system is analyzed numerically, where simple AC-conduction model is used. Wetting tensions are analyzed under various input frequency to excavate the experimental results for the responses of the system on input frequencies.

  • PDF

Investigation of Wetting Characteristics of Polymer Surfaces according to Electron Beam Irradiation (고분자 표면의 전자빔 조사에 따른 젖음특성 고찰)

  • Lee, Hyun Joong;Park, Keun;Kim, Byung Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The present study uses an electron beam (e-beam) to modify the wetting characteristics of thermoplastic polymer surfaces. A high energy e-beam irradiated various polymer surfaces (PET, PMMA, and PC), with variations in irradiation time and applied current. The water contact angles were measured on the e-beam irradiated surfaces in order to investigate the changes in the surface energy and the relevant wettability. Furthermore, XPS analyses were performed to investigate the chemical composition change in the e-beam irradiated surfaces; the results showed that the hydrophilic groups (C-O) increased after the electron beam irradiation. Also, water collection tests were performed for various polymer samples in order to investigate the effect of the surface energy on the ability of water collection, from which it can be seen that the irradiated surfaces revealed better water-collecting capability than pure polymer surfaces.

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF

Measurement of Dynamic Contact Angle of Droplet on Moving Hydrophobic and Hydrophilic Surfaces (이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정)

  • Song, Jungyu;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • This study investigates dynamic wetting behaviors of a water droplet placed on surfaces with different wettability and nano-structures. Hydrophobic and hydrophilic properties on as-received silicon wafers were prepared by fabricating thin films of hydrophobic polymer and hydrophilic nanoparticles via layer-by-layer coating. Dynamic advancing contact angle of droplets on the prepared surfaces was measured at various moving velocities of triple contact line with a high-speed video camera. As advancing velocity of triple contact line increased, dynamic advancing contact angle on the as-received silicon and hydrophobic surfaces sharply increased up to $80^{\circ}$ in the range of order of mm/sec whereas the SiO2 nanoparticle-coated hydrophilic surface maintained low contact angles of about $30^{\circ}$ and then it gradually increased in the velocity range of order of hundred mm/sec. The improved dynamic wetting ability observed on the nanostructured hydrophilic surface can benefit the performance of various phase-change heat transfer phenomena under forced convective flow.

Study on Wetting Characteristics of Laser Cladding Surfaces (레이저 클래딩 표면에 대한 젖음 특성에 관한 연구)

  • Jang, Mu-Yeon;Park, Young-Whan;Kim, Tae-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2019
  • Laser processing has been used in various fields. In this study, the feasibility of a hydrophobic surface was investigated through the laser cladding technique. A diode laser was used, and the output was set to 600-800 W. Seven different specimens were prepared with different cladding widths and spacings, and the contact angles for water droplets were evaluated. As a result, the contact angle of water droplets measured in the direction parallel to the cladding line was higher than that in the vertical direction. The wider the cladding width and the cladding space, the higher the contact angle in the parallel direction. It is thought that when a higher contact angle is formed in the parallel direction, more air can be placed in the valley between the cladding lines. In addition, for the hydrophobic coating effect, the contact angle of the coated cladding surface was increased by about $5-15^{\circ}$ as a whole compared to the coated smooth surface. It was confirmed that the wetting characteristics were improved through the cladding.

Apparent Contact Angle on the Hydrophilic/Hydrophobic Surfaces with Micro-pillars (마이크로 기둥 구조가 있는 친수성/소수성 표면에서의 겉보기 접촉 각에 대한 연구)

  • Yu, Dong In;Doh, Seung Woo;Kwak, Ho Jae;Ahn, Ho Seon;Kim, Moo Hwan;Park, Hyun Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study, the apparent contact angle on the hydrophilic/hydrophobic surfaces with micropillars was studied. The previous researches showed that the Wenzel equation and the Cassie-Baxter equation were thermodynamically derived for the rough hydrophilic/hydrophobic surfaces and generally referenced on the field of wetting phenomena. For the verification of both equations, the apparent contact angle on the hydrophilic/hydrophobic surfaces with micro-pillars was measured. In the comparison between the measured and estimated apparent contact angles with the equations, the differences between the apparent contact angles were analyzed. Conclusively, the available range and limitation of theoretical equations were investigated and further researches about the apparent contact angle on the rough surfaces were proposed.

Comparison of removal torque of dual-acid etched and single-acid etched implants in rabbit tibias (단일, 이중 산처리 임플란트의 회전제거력 비교)

  • Kim, Jong-Jin;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • Purpose: Chemically strong-acids (HF and $HCl/H_2SO_4$) dual etching implant surfaces have higher strengths of osseointegration than machined implant surfaces. However, the dual acid treatment deteriorates the physical properties of the titanium by weakening the fatigue resistance of the implant and causing microcracks. The removal torque comparison between the dual-acid etched (hydrochloric acid, sulfuric acid, HS) and single-acid etched implants (hydrochloric acid, H) could reveal the efficiency of implant surface acid treatment. Materials and methods: Nine $3.75{\times}4mm$ dual-acid etched SLA implants and nine single-acid etched SLA implants were inserted into New Zealand rabbit tibias. After 10 days, removal torque, roughness, and wetting angle were measured. Results: Mean removal torque values were as follows: Mean removal torque were 9.94 Ncm for HS group and 9.96 Ncm for H group (P=.995). Mean surface roughness value were $0.93{\mu}m$ for HS group and $0.84{\mu}m$ for H group (P=.170). Root mean square roughness (RSq) values were $1.21{\mu}m$ for HS group and $1.08{\mu}m$ for H group (P=.294), and mean wetting angle values were $99^{\circ}$ for HS group and $98^{\circ}$ for H group (P=.829). Statistical analysis showed no significant difference between the removal torques, roughness, or wetting angles of the two groups. Conclusion: In this experiment, we found no significant difference in removal torque, roughness, or wetting angle between dual-acid etched and single-acid etched implants.

Development of a three dimensional circulation model based on fractional step method

  • Abualtayef, Mazen;Kuroiwa, Masamitsu;Sief, Ahmed Khaled;Matsubara, Yuhei;Aly, Ahmed M.;Sayed, Ahmed A.;Sambe, Alioune Nar
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.14-23
    • /
    • 2010
  • A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film (소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.