• Title/Summary/Keyword: Wetland sediments

Search Result 64, Processing Time 0.023 seconds

Intraspecific diet shifts of the sesarmid crab, Sesarma dehaani, in three wetlands in the Han River estuary, South Korea

  • Yang, Dongwoo;Han, Donguk;Park, Sangkyu
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • Background: Han River estuary is a national wetland reserve near the Demilitarized Zone (DMZ) between South Korea and North Korea. This trans-boundary estuary area has been well preserved and shows distinctive plant communities along the salinity gradient. To elucidate energy flows and nutrient cycling in this area, we studied trophic relations between the dominant sesarmid crab, Sesarma dehaani, and food sources in three wetlands with different environments along the estuarine gradients. Results: Stable isotope signatures (${\delta}^{13}C$ and ${\delta}^{15}N$) of the crabs were significantly different among the sites and body size classes. Seasonal changes in ${\delta}^{13}C$ of small crabs were distinct from those of large individuals at all the sites. The isotopic values and fatty acid profiles of the crabs were more different among the sites in September than in May. In May, large-sized crabs utilized more plant materials compared to other dietary sources in contrast to small-sized crabs as revealed by a stable isotope mixing modeling, whereas contributions to diets of crabs were not dominated by a specific diet for different body size in September except at site 1. Based on PCA loadings, fatty acid content of $18:3{\omega}3$, known as a biomarker of plant materials, was the main factor to separate size groups of crabs in May and September. The ${\delta}^{13}C$ value of sediment had high correlation with those of small-sized crabs at site 1 and 2 when 1-month time lag was applied to the value for crabs during the surveyed period. Conclusions: Based on the stable isotope and fatty acid results, the consumption habits of S. dehaani appear to be distinguished by sites and their size. In particular, smaller size of S. dehaani appears to be more dependent on fewer food sources and is influenced more by the diet sources from the sediments in Han River estuary.

Holocene Environments of the Buyeo Area Choongnam Province: Reconstructed from Carbon Isotopic and Magnetic Evidences from Alluvial Sequences (충남 부여지역의 홀로세 기후변화 -탄소동위원소분석과 대자율분석을 이용하여-)

  • Park, Kyeong;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.4
    • /
    • pp.396-412
    • /
    • 2011
  • Multi-proxy analysis was used to produce a high-resolution paleoclimatic record from a thick section of the Holocene alluvial fan deposit in Gatap-ri, Buyeo. According to ${\delta}^{13}C$ analyses, five minor climate fluctuations can be determined. From the stage I to stage VI, climate changes are as follows: cool-dry, warm-humid, cool-dry, warm humid, drier than stage IV, and finally more humid environment than stage V. According to magnetic susceptibility records, four different stages can be identified, among which stage ii shows the highest susceptibility. Stage-i deposit is derived from sediments of back marsh-type wetland. Stage-ii and stage-iii deposits, however, show higher magnetic susceptibility because magnetite-enriched soil from weathered upland was transported to the area to form an alluvial fan deposits. Stage-iv deposit is comparable to the modern plow horizon.

Comparison of the Floodplain Vegetation Structure According to Existence of Lateral Connectivity in Streams (하천의 횡적 연결성 유무에 따른 홍수터 식생 구조의 비교)

  • Chu, Yunsoo;Jin, Seung-Nam;Cho, Hyunsuk;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • The flood pulse in streams enhances the biodiversity and ecosystem services of the channel-floodplain ecosystems by exchanging water, nutrients, sediments and organisms. However, the lateral connectivity in most streams of Korea has been disrupted by the levee constructions for the purpose of flood control and land use of floodplains. To compare the characteristics of floodplain vegetation according to existence of lateral connectivity in streams, we investigated the geomorphological and soil environmental factors and structures and distribution of vegetation in the floodplains connected and isolated by levee to the channel in Cheongmi Stream, Seom River, Hwangguji Stream, Mangyeong River, Gomakwon Stream, and Boseong River, Korea. In comparison of soil environments, moisture and clay contents were higher in the isolated floodplain than in the connected floodplain. According to the result of principal component analysis (PCA) using environmental data, the environments of the connected floodplain and the isolated floodplain were separated by soil moisture contents, soil texture and distribution altitude of the vegetation. The results of detrended correspondence analysis (DCA) using vegetation data showed that the isolated floodplain was dominated by the hydropythic communities of diverse life form and that the connected floodplain was dominated by the hygrophytic communities that endure disturbance. In conclusion, it is thought that the vegetation of the floodplain changed to the lentic wetland vegetation dominated by diverse hydrophytes as the floodplain was isolated from the channel by artificial levees.

Holocene Climate Optimum and environmental changes in the Paju and the Cheollipo areas of Korea (한반도 홀로세 온난기후 최적기 (Holocene Climate Optimum)와 지표환경 변화)

  • Nahm, Wook-Hyun;Lim, Jae-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.15-30
    • /
    • 2011
  • Three sediment cores from two different locations (UJ-03 and UJ-12 cores of valley sediment in Paju area, and CL-4 core of wetland sediment in Cheollipo area) along the western Korean Peninsula yield crucial information on the timing and spatial pattern of century-scale climate changes and subsequent surficial responses during the Holocene. In Paju area, the sediments included abundant coarse-grained sediment (coarse sands and pebbles) from 7100 to 5000 cal. yrBP, total organic carbon (TOC) values showed a marked increase from 5000 to 2200 cal. yrBP, several intermittent depositional layers were observed from 2200 cal. yrBP. In Cheollipo area, lake environment developed from 7360 to 5000 cal. yrBP, the deposition of organic materials increased from 5000 to 2600 cal. yrBP, peatland formed from 2600 cal. yrBP. The two patterns of surficial responses to the climate changes through the Holocene are different to each other. This might be due to the dissimilarity in geomorphic conditions. However, the approximate simultaneity of environmental changes in two areas shows that they both can be correlated to the major climate changes. Two areas which have undergone significant changes indicated that the hydrological factors including precipitation and strength of water flow were most responsible for the landscape and geomorphic evolutions. Although the upwards trend in relative sea-level also played a primary role for environmental changes in coastal area (Cheollipo area), detailed studies have still to be undertaken.

  • PDF