• Title/Summary/Keyword: Wetland plant introduction

Search Result 6, Processing Time 0.02 seconds

Germination Experiments using Natural Wetland Soil for Introducing Non-emergent Plants into a Constructed Wetland (비정수식물의 인공습지도입을 위한 자연습지토양 발아실험)

  • Yi, Yong-Min;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Wetland plants are an important component for wetland design and construction because they determine functions of wetlands through interactions with the abiotic environment such as wetland soil and hydrology as well as with other wetland organisms. In this study, germination experiments with soils from a natural wetland that contain seeds of wetland plants were conducted in wetland mesocosms to investigate the applicability of natural wetland soils for introducing and establishing wetland plants into constructed wetlands. Seven species were germinated in the experiment, with two new species that were not found in the field survey of wetland plants in the West Nakdong River area, Korea. The number of plant individuals germinated in submerged conditions (15 individuals) was much greater than that in waterlogged conditions (2 individuals). In experiments in which soils from a natural wetland and a wetland construction site were mixed at different ratios, the largest number of plant individuals was observed in the condition with 100% natural wetland soil. The highest growth was observed at 50% natural wetland soil for Hydrilla verticillata and 100% for Ceratophyllum demersum. These results suggest that 1:1 mixture of soils from natural wetland wetlands and wetland construction sites would provide an appropriate condition for secure establishment of submerged plants in constructed wetlands.

  • PDF

Reducing Plan of Environmental and Social Conflicts for Tidal Power Plant through the Analysis of Environmental Impact (조력발전사업에서의 환경적 영향 분석을 통한 환경·사회적 갈등 저감방안)

  • Ahn, Se Woong;Lee, Hi Sun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.789-799
    • /
    • 2012
  • The major causes of environmental and social conflicts were analyzed through the samples of the construction and the management for tidal power plant abroad and inland. Based on the results, the eco-friendly and socially acceptable policy instruments for decreasing the scope and intensity of the conflicts were explored. Regarding environment issues, it was found that the tidal power project resulted in decreasing in tidal range and area of intertidal zone and in damaging to tidal flat and wetland conservation area. Also there are the characteristic change of tidal current and biological effect, etc. The major environmental and social conflicts were resulted from the distrust of environmental results to environmental impact assessment and prior environmental review and the distrust of project feasibility study, and insufficient activities of public participation. In this study, introduction to joint fact-finding(JFF) was reviewed as the measure of minimizing environmental and social conflicts.

Development and Application of a Model for Restoring a Vegetation Belt to Buffer Pollutant Discharge (수질 오염물질 배출저감을 위한 완충식생 복원 모델 개발)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Moon, Jeong Sook;Bang, Je Yong;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • In order to improve water quality in the Paldang Lake, a riparian vegetation belt, treatment wetland, and artificial floating island were designed for introduction in the upland field, the estuary of tributaries, and the section of water facing mountainous land, respectively. We synthesized vegetation information collected from a reference river and found that herbaceous, shrubby, and tree vegetation zones tended to be dominated by Phragmites japonica, Phalaris arundinacea, etc.; Salix gracilistyla, S. integra, etc.; and S. koreensis, S. subfragilis, and Morus alba, respectively. In our plan, the herbaceous vegetation zone, which is established on floodplains with a high frequency of disturbance, will be left in its natural state. A shrubby vegetation zone will be created by imitating the species composition of the reference river in the ecotone between floodplain and embankment. A tree vegetation zone will be created by imitating species composition on the embankment slope. In the treatment wetland, we plan to create emerged and softwood plant zones by imitating the species composition of the Zizania latifolia community, the Typha orientalis community, the P. communis community, the S. integra community, and the S. koreensis community. The floating island will be created by restoring Z. latifolia and T. orientalis for water purification purposes.

Rooftop Planting Methods and Invading Species (옥상녹화 식재기법에 따른 식생변화 - 이입식물을 중심으로 -)

  • Choi, Hee-Sun;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.35-47
    • /
    • 2004
  • In order to study changes in vegetation pursuant to rooftop revegetation plantation methods, plantation methods for rooftop revegetation were divided into two types through an analysis of recent trends. Then, Planted plants and invasive plants on sites where the planting methods were introduced were monitored. Planting methods were divided into mono-layer meadow cover type and multi-layer planting cover type. They showed some differences in terms of the availability of wetland, the structure of vegetation layers, the planted species, and the material of mulching. According to the results of monitoring the two sample sites for different plantation methods, the number of invasive plants was higher in multi-layer planting cover type and the ratio of naturalized plants was higher by 30% in average in mono-layer meadow cover type. The main reason for such a result is that the natural soil used in the multi-layer planting cover type likely contained some seeds. Moreover, it's harder for invasive plant seeds to germinate in volcanic rocks than in natural soil. Also, it is attributable to wetlands available in multi-layer planting cover type and diverse living environments created by multi-layer planting. The reason of the ratio of naturalized plants being higher by at least 10% in mono-layer meadow cover type is the character of naturalized plants being stronger in unfavorable conditions than nature plants are. Accordingly, the germination rate in the volcanic rock mulching has likely contributed in raising the introduction and germination of naturalized plants. The results showed that multi-layer planting cover type using wetland creation and nature soil can increase the number of invasive plants and lower the ratio of naturalized plants. However, since seeds contained in the natural soil can affect the growth of planted plants, this needs to be clarified, It was judged that mono-layer meadow cover type may affect more greatly on the germination and growth of invasive plants than on those of planted plants, Its potential adoption in highly urbanized areas was examined. By complementing with the mutual benefits of each plantation method, it appeared possible to shift to a rooftop revegetation system suitable to the site.

Flora, Actual Vegetation Map, and Primary Production of the Vascular Hydrophytes and Hygrophytes in the Upo Wetland (우포늪에서 수생 및 습생 관속식물의 식물상, 현존식생도 및 1차 생산)

  • Kang, Min-jeong;Kim, Cheol-Soo;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.45-55
    • /
    • 2007
  • Flora, actual vegetation map, distribution area by the life form, primary productivity and annual primary production by the vascular hydrophytes and hygrophytes were investigated in the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from May 2005 to March 2006. The flora of Upo, Mokpo, Sajipo, Jokjibyeol, Topyeongcheon upstream, and Topyeongcheon downstream were composed of 263, 233, 244, 182, 190, and 178 taxa, respectively. The flora of total study area was 85 families, 224 genera, 287 species, 42 varieties, 4 form, or total 333 taxa. Among them, hydrophytes, hygrophytes, and others were 38, 108, and 187 taxa, respectively. The life form of the vascular hydrophytes was classified as 20 taxa of emergent plants, 6 taxa of floating-leaved plants, 5 taxa of free-floating plants, and 7 taxa of submersed plants, respectively. There were 27 plant communities including pure population, mixed population, and etc. It is also found that Trapa japonica-Ceratophyllum demersum community occupies 60.64 ha, the largest area, and Salvinia natans-Ceratophyllum demersum community 32.91 ha, Zizania latifolia community 30.05 ha, and that the area of free-floating plants was the largest as 172.6 ha(47.9%) on the basis of life form. Total annual primary production of the vascular hydrophytes and hygrophytes was 1,383.3ton. That of the emergent hydrophytes was the most as 564.1 ton(40.8%), and those of the free-floating, floating-leaved, and the submersed were 484.1 ton(34.9%), 146.7 ton(10.6%), and 1.3 ton(0.5%), respectively, and the hygrophytes was 182.1 ton(13.2%). Since most plant species are fairly adapted to the present marsh environment, bad influences and change of species composition are expected by the artificial influences on the wetland such as fragmentation, reclamation, and introduction of the exotic species. Therefore, schemes and counterplans for the conservation and preservation of the marsh are demanded.

  • PDF

The Construction and Management of Artificial Wetland Using Emergent Macrophytes for High Biomass Production (대형정수식물을 활용한 높은 생산성의 인공습지 조성 및 관리)

  • Hong, Mun Gi;Heo, Young Jin;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • To present a guideline on the construction and management of artificial wetlands for high biomass production, three emergent macrophytes (Phragmites australis, PA; Typha angustifolia, TA; and Zizania latifolia, ZL) were planted under two substrates conditions (general soil with and without moss peat) and two water levels (5 cm and 20 cm) and monitored for three years. ZL showed greater growth performance rather than the others not only at early growth phase in the first year [shoot height, 200 cm; above-ground dry weight (AGDW), 500 $g/m^2$] but also in the last year (ZL, 1,100 $g/m^2$; TA, 770 $g/m^2$; and PA, 450 $g/m^2$ of AGDW). ZL with rapid growth at the early growth phase was not affected by naturally introduced weeds, whereas slower and poorer growth of PA and TA at the early growth phase resulted in relatively higher introduction and establishment of natural weeds. In turn, such introduced weeds negatively contributed to the growth of PA and TA particularly under shallow water (5 cm) with the substrate condition including moss peat. We suggest a plant material with rapid and great growth at the early phase such as ZL for reducing possible negative influences by the natural weeds and wild animals for high biomass production in constructed wetlands. A pre-growing process in greenhouse prior to planting might be an useful option to raise the competitiveness of those species when planting PA and/or TA. In addition, we recommend that integrated weed management system with utilizing various options at the most appropriate timing must be applied for maintaining sustainable high biomass production at the artificial wetlands.