• 제목/요약/키워드: Wetland plant

검색결과 356건 처리시간 0.026초

대구광역시 안심습지의 식물상 (Flora in Ahnshim Wetland, Daegu Metropolitan City)

  • 유주한;정성관;박경훈;김경태;이우성
    • 한국자원식물학회지
    • /
    • 제21권2호
    • /
    • pp.162-170
    • /
    • 2008
  • 본 연구는 국내 습지보전 계획수립에 대한 기초자료 제공에 그 목적이 있다. 연구결과를 요약하면 다음과 같다. 안심습지에 분포하는 관속식물상은 57과 155속 179종 22변종 등 총 201 분류군이 요약되었다. 산림청 지정 희귀 및 멸종위기식물은 자라풀이었다. 습지식물의 경우 정수식물은 애기부들, 개피, 줄, 갈대, 고마리, 미나리, 물칭개나물, 침수식물은 말즘, 나사말, 검정말, 붕어마름, 물수세미로 나타났다. 그리고 부엽식물은 가래, 자라풀, 연꽃, 노랑어리연꽃, 부유식물은 생이가래, 개구리밥, 좀개구리밥으로 확인되었다. 귀화식물은 메귀리, 오리새, 소리쟁이, 묵밭소리쟁이, 털비름, 다닥냉이, 말냉이, 나도재쑥, 개소시랑개비, 벳지, 아까시나무, 족제비싸리, 토끼풀, 자주개자리, 가죽나무, 애기땅빈대, 큰달맞이꽃, 둥근잎유홍초, 둥근잎나팔꽃, 까마중, 큰개불알풀, 뚱딴지, 돼지풀, 도꼬마리, 개망초, 망초, 큰망초, 개쑥갓, 미국가막사리, 만수국아재비, 서양민들레, 붉은씨서양민들레, 방가지똥 등 총 33분류군이었다.

하수종말처리장 방류수와 비점오염원 처리를 위한 주암호 인공습지 2년 운영 사례 (Case Study: Operation of the Juam Constructed Wetland for Effluent from a Sewage Treatment Plant and Diffuse Pollution for Two Years)

  • 정용준
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1031-1037
    • /
    • 2006
  • In order to improve water quality of the Juam Lake, a constructed wetland was implemented and operated for 2 years with the effluent of sewage treatment plant and diffuse pollutant discharged from agricultural area. During the summer season, average removal efficiencies for BOD and SS were 15.8% and 39.4%, respectively. Due to the mixed effect of vegetation, soil microbes and sediments, the higher nutrient removal efficiencies were obtained: average T-N and T-P removal efficiencies were 64.2% and 71.7%, respectively. The concentration of sediment was increased initially, and maintained constant throughout monitoring period. The highest nitrogen and phosphorus uptake were observed in Phragmites japonica. The nitrogen uptake was estimated as 0.235 DW mg/g while phosphorus uptake was estimated as 2.059 DW mg/g.

하수처리수와 하천수를 대상으로 한 생태적 수질정화 비오톱 시스템의 오염물질 제거에 대한 수질정화 평가 (Evaluation of Pollutants Removal for Treated Wastewater Effluent and River Water by Meandering Constructed Wetland System)

  • 이상호
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.131-139
    • /
    • 2012
  • Field experiment was performed from June 2010 to July 2011 to evaluate pollutants removal efficiency in the constructed wetland system for the treated wastewater and the river water. The wetland systems were constructed near Gyungan river. Two different systems with meandering shape were compared for seasonal base and operational period base. Several kinds of aquaculture are planted through the corridor of wetland system. Average removal rate of BOD, T-N and T-P for A system were 15.8%, 14.8% and 26.5%, respectively. Average removal rate of BOD, T-N and T-P for C system were 23.5%, 27.8% and 10.6%, respectively. The effluent from two wetland systems often exceeded effluent water quality standards for wastewater influent, however effluent water quality standards for river water. However, the wetland system can be useful to treat polluted river water and effluent from wastewater plant. Removal rate of pollutants in seasonal variation was the highest in summer for BOD and T-N, however the removal rates of T-P were higher in spring and autumn than in summer.

일월저수지의 습지 환경과 식생발달 (Wetland Environment and Vegetation Development of the Ilwol Reservoir)

  • 한윤호;김동엽;안원용
    • 한국환경복원기술학회지
    • /
    • 제5권2호
    • /
    • pp.9-16
    • /
    • 2002
  • Wetland areas have characteristics of dynamic cycling of materials in relation to land and water. Although having great potential for providing unique natural environments, they are vulnurable to human land use activities and some places are in danger of being eliminated. This study had an objective of investigating vegetation changes in Ilwol reservoir to provide basic information for the preservation and ecological restoration of the wetland area. Wetland vegetation was investigated along with the site conditions which may affect the vegetation development. There were 10 vegetation types with various species composition. Humulus japonicus, Zizania latifolia, Phragmites japonica, Bidens frondosa, Typha orientalis, Scirpus tabernaemontari, Phragmites communis, Persicaria thunbergii were the major wetland plants found at the reservoir area. Precipitation and water level were the elements mostly affecting the distribution of the plants. Phragmites japonica was closest to the water front, followed by Zizania latifolia, Humulus japonicus and Bidens frondosa. Most plant zones were predominated by one or a few species.

질소 및 인에 대한 흡착특성이 다른 여재를 사용한 지하흐름형 인공습지 효율 평가 (Performance Evaluation of Subsurface-flow Wetland with Media Possessing Different Adsorption Capacities for Nitrogen and Phosphorus)

  • 서준원;장형석;강기훈
    • 한국물환경학회지
    • /
    • 제23권1호
    • /
    • pp.155-160
    • /
    • 2007
  • Constructed wetland has been widely used for the treatment of sewage, stormwater runoff, industrial wastewater, agricultural runoff, acid mine drainage and landfill leachate. For the removal of nitrogen and phosphorus, uptake by plants and adsorption to media material are the major processes, and, therefore, the selection of media with specific adsorption capacity is the critical factor for the optimal design of wetland along with the selection of appropriate plant species. In this study, two media materials (loess bead and mixed media) possessing different adsorption characteristics for ammonium and phosphate were selected, and their adsorption characteristics were evaluated. In addition, the performance of subsurface-flow wetland systems employing these media was evaluated in both batch and continuous flow systems. With LB medium, beter phosphorus removal was observed, while better ammonia removal was obtained with MM medium. In addition, enhanced removal efficiencies were observed in the wetland systems employing both media and aquatic plants, mainly due to the better environment for microbial growth. As a result, appropriate selection or combination of media with respect to the inflow water quality maybe important factors for the successful design and operation of wetland systems.

Plant Species Assemblages and Vegetation Composition of Wetlands Within an Upland Forest

  • Huh, Man-Kyu;Lee, Hak-Young;Moon, Sung-Gi
    • 환경생물
    • /
    • 제28권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Small wetlands in an upland matrix can support diverse vegetation composition that increase both local and regional species richness. In this study we characterize the full range of wetland vegetation in an upland forest landscape at Dumyeong-ri, Gijang-gun, Busan. This wetland index can be calculated with species data, or with community type data as performed. Classified community types were used to describe vegetation at three wetlands and adjacent areas. The communities contained 28 species of vascular plants and 28 species were identified four plant community types. The Pinus densiflora type was dominated by Pinus densiflora and contained only four species. None of the plots had high proportion of standing water. The Carpinus laxiflora type had high obligate upland species (OU) and facultative upland species (FU). The Rhododendron mucronulatum type grew in over half of the plots included Pinus densiflora and Alnus japonica. Some species bother swampy areas adjacent to site C. The Miscanthus sacchariflorus type consisted of seasonal wetlands. The three sites contained nine species with the strongest indicator species being Miscanthus sinensis var. purpurascens, Miscanthus sinensis, Echinochloa crus-galli, and Sagittaria aginashi. This type had the highest proportions of obligate wetland species. Plant species richness averaged 5.069. Shannon-Weaver index of diversity also varied among the community types (F=22.7, df=4, 115), with the types FU having significantly higher value (2.746) than the others (1.057 for type FW and 1.600 for type OU). Regional plans including all of the diverse types of wetland vegetation in upland forests will contribute substantially to the conservation of plant diversity.

강원도 지역 산림습원의 식물다양성 연구 (Plants Species Diversity and Flora of Wetlands in the Forest of Gangwon Province)

  • 손호준;김영설;김남영;이학봉;김세창;이희봉;박완근
    • 한국자원식물학회지
    • /
    • 제28권4호
    • /
    • pp.419-440
    • /
    • 2015
  • This study was carried out to investigate the flora of indigenous habitat of Simjeok forest wetland, Mt. Jeombomg forest wetland, Mt. Sohwangbyung forest wetland, Jilmoi-neup, and Mt. Myeon forest wetland in Gangwon Province. The vascular plants were summarized as 547 taxa; 92 families, 296 genera, 468 species, 4 subspecies, 67 varieties, 8 forms. The plants that are specially noteworthy are 17 taxa of Korean endemic plants, 3 taxa of Critical Endangered Species (CR), 4 taxa of Endangered Species (EN), 8 taxa of Vulnerable Species (VU) and 17 taxa of Least Concemed Species (LC) in rare plants as categorized by the Korean Forest Service. Furthermore, V, IV, III degrees of floristic regional indicator plants as categorized by the Korean Ministry of Environment included 9 taxa, 14 taxa and 34 taxa, respectively. In addition, 25 taxa of naturalized plants were observed. In this study, we identified a variety of plants observed in the wetlands of Gangwon Province. We believe that this study will provide useful data for future research on the conservation and management of wetlands.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Floristic characteristics of vascular plants and first distributional report of Pseudostellaria baekdusanensis M. Kim in Yongneup wetland protected area

  • Kim, Young-Chul;Chae, Hyun-Hee;Oh, Sang-Heock;Choi, Seung-Ho;Hong, Moon-Pyo;Nam, Gi-Heum;Choi, Jae-Yoon;Choi, Hyun-Sook;Lee, Kyu-Song
    • 한국환경생태학회지
    • /
    • 제29권2호
    • /
    • pp.132-144
    • /
    • 2015
  • Yongneup wetland protected area, the only high moor in Korea, is a core area to conserve biodiversity. Even though the Yongneup wetland protected area is relatively small, various plant species are distributed in the Yongneup wetland protected area because it includes various habitats showing different environmental gradients. Vascular plants distributed in the Yongneup wetland protected area were identified as a total of 376 taxa that is composed of 73 families, 217 genera, 322 species, 3 subspecies, 44 varieties and 7 forms. For endangered plants designated by the Ministry of Environment, 5 species including Trientalis europaea var. arctica, Lilium dauricum, Halenia corniculata, Lychnis wilfordii and Menyanthes trifoliata were found and 34 taxa were confirmed to be distributed only in the mountainous wetland habitats. Regarding naturalized plants, a total of 11 taxa were distributed, but most of them were distributed in the areas where artificial interference has occurred. And in areas inside the wetlands that are relatively well preserved, 2 species of Bidens frondosa and Erigeron annuus were observed. In this study, the occurrence and distribution of Pseudostellaria baekdusanensis M. Kim, which was recently found in Mt. Baekdu and reported as a new species, were identified in the Yongneup wetland protected area. A wetland is a very vulnerable area to drastic environmental changes and damages to its ecosystem could cause the extinction of rare plant species which are distributed only in the wetlands. Therefore, it is mandatory that current status of the Yongneup wetland protected area is evaluated and actions to prevent rapid environmental changes are taken. Fourteen separate investigations were conducted in 2013 and another four in 2014, to evaluate current status of the Yongneup wetland protected area. These investigations have provided us the basic information for future actions of conservation and restoration.

수질개선용 인공습지 실험자료에 의한 유출수 농도 추정식 개발 (Development of Effluent Concentration Estimation Equation from Treatment Wetland Experimental Data)

  • 윤춘경
    • 한국농공학회지
    • /
    • 제41권5호
    • /
    • pp.86-92
    • /
    • 1999
  • Effluent concentration estimation equations for wetland system were developed throught statistical analysis of treatment wetland experimental data. Existin g empirical equations were reviewed for thier accuracy with experimental data, and compared with the estimatin equations. About 70 experimental data sets were used for multiple regression, and variables include influent concentration, hydraulic loading rate, average daily air temperature , and plant coverage. The estimatin equations developed for BOD5 , SS ,T-P, and T-N predicted effluent concentrations moderately well, and coefficient fo determination ($R^2$) for them was 0.74 , 0.60, 0.59 and 0.58 respectively. The equations obtained from same data but excluding plant coverage showed relatively lower $R^2$ than the former case, and it was 0.66, 0.52, 0.41 and 0.57 respectively. The EPA, WPCF , and Kadlec and Knight equations worked poorly and $R^2$ for them was significantly lower than the estimation equation developed in the study. The reason might be that the existing equations were oversimplified that they did ot include important parameters such as air temperature and plant coverage. Therefore, developing reasonable estimation equations from experiment under realistic condition is highly recommended rather than using exiting estimation equations.

  • PDF