• Title/Summary/Keyword: Wetland Value

Search Result 155, Processing Time 0.036 seconds

Estimation of Carbon Storages and Fluxes by Ecosystem Type in Korea (국내 생태계 유형별 탄소 저장 및 거동 산정 연구 현황 분석)

  • Inyoung Jang;Heon Mo Jeong;Sang-Hak Han;Na-Hyun Ahn;Dukyeop Kim;Sung-Ryong Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • As climate change gets severe, the ecosystem acts as an important carbon sink, therefore efforts are being made to utilize these functions to mitigate climate change. In this study, we inventoried and analyzed the previous studies related to carbon storage and flux by ecosystem type (forest, cropland, wetland, grassland, and settlement) and carbon pool (aboveground and belowground biomass, dead wood, Litter, soil organic carbon, and ecosystem) in Korean ecosystems. We also collected the results of previous studies and calculated the average value of carbon storage and flux for each ecosystem type and carbon pool. As a result, we found that most (66%) of Korea's carbon storage and fluxes studies were conducted in forests. Based on the results of forest studies, we estimated the storage by carbon stock. We found that much carbon is stored in vegetation (aboveground: 4,018.32 gC m-2 and belowground biomass: 4,095.63 gC m-2) and soil (4,159.43 gC m-2). In particular, a large amount of carbon is stored in the forest understory. For other ecosystem types, it was impossible to determine each carbon pool's storage and flux due to data limitations. However, in the case of soil organic carbon storage, the data for forests and grasslands were comparable, showing that both ecosystems store relatively similar amounts of carbon (4,159.43 gC m-2, 4,023.23 gC m-2, respectively). This study confirms the need to study carbon in rather diverse ecosystem types.

Comparison of Habitat Quality by the Type of Nature Parks (자연공원 종류별 서식지질 비교)

  • Jung-Eun Jang;Min-Tai Kim;Hye-Yeon Kwon;Hae-Seon Shin;Byeong-Hyeok Yu;Sang-Cheol Lee;Song-Hyun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.553-565
    • /
    • 2022
  • Awareness of the ecological value and importance of protected areas has increased as climate change accelerates, and there is a need for research on ecosystem services provided by nature. The natural park, which is a representative protected area in Korea, has a system of national parks, provincial parks, and county parks. National parks are managed systematically by the Korea National Park Service, but local governments manage provincial parks and county parks. There may be the same hierarchical differences in naturalness (habitat quality) depending on the hierarchy of the natural parks, but it has not been verified. To identify differences, we examined 22 mountain-type natural parks using habitat quality using the INVEST model developed by Stanford University. The analysis of the habitat quality, regardless of the type and area of the natural park, showed that it was higher in the order of Taebaeksan National Park (0.89), Juwangsan National Park (0.87), Woongseokbong County Park (0.86), and Gayasan National Park (0.85). The larger the area, the higher the value of habitat quality. A comparison of natural parks with similar areas showed that the habitat quality of national parks was higher than that of provincial parks and parks. On the other hand, the average habitat quality of county parks was 0.83±0.02, which was 0.05 higher than that of provincial parks at 0.78±0.03. Furthermore, the higher the proportion of forest areas within the natural park, the higher the habitat quality. The results confirmed that the naturalness of natural parks was independent of their hierarchy and that there are differences in naturalness depending on land use, land coverage, and park management.

Recruitment and Succession of Riparian Vegetation in Alluvial River Regulated by Upstream Dams - Focused on the Nakdong River Downstream Andong and Imha Dams - (댐 하류 충적하천에서 식생이입 및 천이 - 낙동강 안동/임하 댐 하류하천을 중심으로 -)

  • Woo, Hyo-Seop;Park, Moon-Hyung;Cho, Kang-Hyun;Cho, Hyung-Jin;Chung, Sang-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.455-469
    • /
    • 2010
  • Changes of geomorphology in alluvial river and vegetation recruitment on its floodplain downstream from dams are investigated both qualitatively and quantitatively focusing on the downstream of Andong dam and Imha dam on the Nakdong River. Results of the analyses of river morphology and bed material in the study site show a general trend of riverbed degradation with a max scour of 3 m and bed material coarsening from pre-dam value of 1.5 mm in D50 to post-dam value of 2.5 mm. Decrease in bed shear stress due to the decrease in flood discharge have caused vegetation recruitment on the once-naked sandbars. As result, the ratio of area of vegetated bars over total area of bars has drastically changed from only 7% in 1971 before the Andong dam (constructed in 1976) to 25% after it, and increased to 43% only three year after the Imha dam (constructed in 1992) and eventually to 74% by 2005. Analysis of the vegetation succession at Wicjeol subreach, one of the three subreaches selected in this study for detailed investigation, has clearly shown a succession of vegetation on once-naked sand bars to a pioneering stage, reed and grass stage, willow shrub and eventually to willow tree stages. At the second subreach selected, two large point bars in front of Hahoe Village seem to have maintained their sand surfaces without a signifiant vegetation recruitment until 2005. The sand bars, however, seem to have been invaded by vegetation recently, which warns river managers to have a countermeasure to protect the sand bars from vegetation invasion in order to conserve them for the historical village of Hahoe. On the other hand, recruitment and establishment of vegetation on the sand bars by artificial disturbance of the river, such as damming, can create an unique habitat of backmarsh in the sandy river, as shown in the case of Gudam Wetland, and may increase the biodiversity as compared with relatively monotonous sand bars. Last, the premise in this study that decrease in flood discharge due to upstream dams and decrease in bed shear stress can induce vegetation recruitment on the naked sand bars in the river has been verified with the analyses of the distribution of dimensionless bed shear stress along the selected cross section in each subreach.

Characteristics of the Rainfall-Runoff and Groundwater Level Change at Milbot Bog located in Mt.Cheonseong (천성산 밀밭늪의 강우 유출 및 지하수위 변동 특성)

  • Jung, Yu-Gyeong;Lee, Sang-Won;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.559-567
    • /
    • 2010
  • This study was conducted to investigate the hydrological characteristics of groundwater level change and rainfall hydrological runoff processes caused by tunnel construction at Milbot bog located in Mt. Cheonseong. Data were collected from July 2004 to May 2008. The results were summarized as follows: The occurrence time of the direct runoff caused by unit rainfall at the Milbot bog were tended to be slower than those at general mountainous basin. Also, runoff did not sensitively respond to amount of rainfall at the most of the long and short term hydrograph. The annual runoff rates from 2004 to 2008 were 0.26, 0.13, 0.16, 0.25 and 0.27, respectively, slightly increased after 2005 regardless of the tunnel construction. Thus, the function of Milbot bog will be weakened, and it supposed to be changed to land in the future because of increasing annual runoff. The annual runoff rate for 4 years was 0.19, which is greatly lower than that of general mountainous basin. The recession coefficient of the direct runoff in short term hydrograph was ranged to 0.89~0.97, which is much larger than that of the general mountainous basin, 0.2~0.8. The recession coefficient of base flow ranged from 0.93 to 0.99, which are similar to general mountainous watershed's values. Groundwater level of Milbot bog increased or decreased in proportion to rainfall intensity, and in the descending time after the groundwater level was reached at peak point, it tends to be decreased very slowly. Also, groundwater level increased or decreased maintaining relatively high value after precedent rainfall. Groundwater level was highest during summer with heavy rainfall, but was lowest during winter. Average groundwater levels decreased annually from 2004 to 2008, -8.48 cm, -14.60 cm, -20.46 cm, -20.11 cm, -28.59 cm, respectively. Therefore, it seems that the Milbot bog is becoming dry and losing its function as a bog.

The Ecological Values of the Korean Demilitarized Zone(DMZ) and International Natural Protected Areas (비무장지대(DMZ)의 생태적 가치와 국제자연보호지역)

  • Cho, Do-soon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.272-287
    • /
    • 2019
  • The Korean Demilitarized Zone (DMZ) was established in 1953 by the Korean War Armistice Agreement. It extends from the estuary of the Imjin River, in the west, to the coast of the East Sea. It is 4 km in width and 148 km in length. However, the ecosystems of the civilian control zone (CCZ) located between the southern border of the DMZ and the civilian control line (CCL) and the CCZ in the estuary of the Han River and the Yellow Sea are similar to those in the DMZ, and, therefore, the ecosystems of the DMZ and the CCZ are collectively known as the "ecosystems of the DMZ and its vicinities." The flora in the DMZ and its vicinities is composed of 1,864 species, which accounts for about 42% of all the vascular plant species on the Korean Peninsula and its affiliated islands. Conducting a detailed survey on the vegetation, flora, and fauna in the DMZ is almost impossible due to the presence of landmines and limitations on the time allowed to be spent in the DMZ. However, to assess the environmental impact of the Munsan-Gaesong railroad reconstruction project, it was possible to undertake a limited vegetation survey within the DMZ in 2001. The vegetation in Jangdan-myeon, in Paju City within the DMZ, was very simple. It was mostly secondary forests dominated by oaks such as Quercus mongolica, Q. acutissima, and Q. variabilis. The other half of the DMZ in Jangdan-myeon was occupied by grassland composed of tall grasses such as Miscanthus sinensis, M. sacchariflorus, and Phragmites japonica. Contrary to the expectation that the DMZ may be covered with pristine mature forests due to more than 60 years of no human interference, the vegetation in the DMZ was composed of simple secondary forests and grasslands formed on former rice paddies and agricultural fields. At present, the only legal protection system planned for the DMZ is the Natural Environment Conservation Act, which ensures that the DMZ would be managed as a nature reserve for only two years following Korean reunification. Therefore, firstly, the DMZ should be designated as a site of domestic legally protected areas such as nature reserve (natural monument), scenic site, national park, etc. In addition, we need to try to designate the DMZ as a UNESCO Biosphere Reserve or as a World Heritage site, or as a Ramsar international wetland for international cooperation. For nomination as a world heritage site, we can emphasize the ecological and landscape value of the wetlands converted from the former rice paddies and the secondary forests maintained by frequent fires initiated by military activities. If the two Koreas unexpectedly reunite without any measures in place for the protection of nature in the DMZ, the conditions prior to the Korean War, such as rice paddies and villages, will return. In order to maintain the current condition of the ecosystems in the DMZ, we have to discuss and prepare for measures including the retention of mines and barbed-wire fences, the construction of roads and railroads in the form of tunnels or bridges, and the maintenance of the current fire regime in the DMZ.