• Title/Summary/Keyword: Wet chemical technique

Search Result 85, Processing Time 0.03 seconds

Sol- Gel Synthesis and Luminescent Properties of ${Y_2}{SiO_5}:Ce$ Blue Phosphors (${Y_2}{SiO_5}:Ce$ 청색 형광체의 졸-겔 합성 및 발광특성)

  • Lee, Jun;Han, Cheong-Hwa;Park, Hee-Dong;Yun, Sock-Sung
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.740-744
    • /
    • 2001
  • The $Y_2SiO_5:Ce$ phosphors were synthesized by sol-gel technique in order to improve the performance of blue emitting phosphors for field emission display(FED). The resulted$Y_2SiO_5:Ce$ phosphors enhanced the emission intensity. In addition, calcination temperature of sol-gel technique(1300~140$0^{\circ}C$) was lower than that of the solid state reaction(>1$600^{\circ}C$). Under 365 nm and low voltage electron excitations. $Ce^{3+}$ -activated $Y_2SiO_5$phosphors showed blue emission band with a range of 400~ 430nm. Especially, 2mol% $Ce^{3+}$ doped $Y_2SiO_5:Ce$phosphors showed the maximum emission intensity. We have also controlled drying temperature of wet gel, pH, and $H_2O$/TEOS molar ratio for the optimum condition of TEOS hydrolysis.

  • PDF

Modeling of Grade Change Operations in Paper Plants

  • Ko, Jun-Seok;Yeo, Yeong-Koo;Ha, Seong-Mun;Ko, Du-Seok;Kang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.291-305
    • /
    • 2003
  • In this work we developed the closed-loop model of a paper machine during grade change with the intention to provide a reliable dynamic model to be used in the model-based grade change control scheme. During the grade change, chemical and physical characteristics of paper process change with time. It is very difficult to represent these characteristics on-line by using physical process models. In this work, the wet circulation part and the drying section were considered as a single process and closed-loop identification technique was used to develop the grade change model. Comparison of the results of numerical simulations with plant operation data demonstrates the effectiveness of the model identified.

  • PDF

Modeling of Grade Change Operations in Paper Mills

  • Ko, Jun-Seok;Yeo, Yeong-Koo;Ha, Seong-Mun;Lim, Jung-Woo;Ko, Du-Seok;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • In this work we developed the closed-loop model of a paper machine during grade change with the intention to provide a reliable dynamic model to be used in the model-based grade change control scheme. During the grade change, chemical and physical characteristics of paper process change with time. It is very difficult to represent these characteristics on-line by using physical process models. In this work, the wet circulation part and the drying section were considered as a single process and closed-loop identification technique was used to develop the grade change model. Comparison of the results of numerical simulations with mill operation data demonstrates the effectiveness of the model identified.

Effects of Drying and Heating on the Chemical Species of Heavy Metals in Lake Chungcho Sediments (건조 ${\cdot}$ 가열처리가 청초호 퇴적물 중 중금속의 화학적 존재형태에 미치는 영향)

  • Park, Gil-Ok;Kim, Hee-Joung;An, Hae-Jung;Kim, Shin-Hee;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.334-340
    • /
    • 2005
  • The chemical forms of Cd, Cu, Pb, and Zn were analysed by sequential extraction technique to evaluate the effects of drying and heating of dredged sediments from Lake Chungcho. The most abundant fraction of Cd, Cu, and Zn in the wet and untreated sediment was organic/sulfidic fraction that is state in reducing environment such as the bottom condition of Lake Chungcho, while Pb dominated in residual fraction. This means that the source of Cd, Cu, and Zn in the Chungcho lake sediment is related to the organic degradation and Pb to the erosion from surrounding rocks. With drying and oxidation by dredging, heating treatment, and disposal of the lake sediment, the chemical forms of studied metals changed greatly from organic/sulfidic fraction to adsorbed and reducible fractions which are more labile in oxygenated environment. Organic/sulfidic fraction of Cd, Cu and Pb in the wet sediment was transformed with drying and heating treatments to the labile ones like adsorbed and reducible fraction, but Zn to carbonate and reducible fraction. Heating of the sediment at $320^{\circ}C$ greatly increased the labile fraction of Cd and Cu, while that at $105^{\circ}C$ for Pb and Zn. It is believed that the increase in labile forms of heavy metals in the sediments by drying and heating is caused by the contact with oxygen during drying and heating and by the increase of pH of the pore water at the expense of organic/sulfidic fraction. It is concluded that the drying and oxidation currently used in the treatment of dredged sediment can increase labile forms of heavy metals in the sediment, and the potential of the metal availability from the sediment.

Design and Applications of Molecularly Imprinted Polymers for Selective Separations (선택적 분리를 위한 분자 각인 고분자의 설계 및 응용)

  • 정수환;오창엽;서정일;박중곤
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

  • PDF

Effect of pH and Drying Temperature on Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors by Sol-Gel Technique (졸-겔 합성에서 pH 및 건조온도가 Zn2SiO4:Mn,Al 녹색 형광체의 발광특성에 미치는 영향)

  • Sung, Bu-Yong;Han, Cheong-Hwa;Park, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.333-337
    • /
    • 2005
  • In order to improve the performance of green emitting phosphors for plasma display panel, the $Zn_2SiO_4:Mn,Al$ phosphors were synthesized using sol-gel technique and studied using SEM and VUV photoluminescence spectrometer. pH values of the starting solutions (pH = 0.5$\~$2.34) were controled by HCl as the catalysis of hydrolysis and wet gels were dried at $80^{\circ}C$ and $120^{\circ}C$, respectively. We investigated the effects of pH and drying temperatures during sol-gel processes. The results indicated that the phosphor prepared at pH = 1 showed the maximum emission intensity in both drying conditions and the effect of pH of the starting solution on morphology were increased with particle size as HCl and phosphor dried at high temperature showed more spherical and smaller particles than at low.

High Tc Superconducting Microstrip Patch antenna ; Characterization of Superconducting Antenna using Non-Radiating Edge Feeding Technique (고온 초전도 마이크로스트립 패치 안테나; 비방사면 급전방식을 이용한 초전도 안테나 특성)

  • Chung, Dong-Chul;Park, Sung-Jin;Hwang, Jong-Sun;Park, Jong-Kwang;Han, Byoung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.375-381
    • /
    • 2000
  • In this paper, we described the characterization of High-Tc Superconducting(HTS) microstrip antenna using non-radiating edge feeding technique and reported the microwave properties of HTS antennas with temperature. To do this, we prepared the $YBa_2Cu_3O_{7-x}$ superconducting thin film on MgO substrate using pulse-laser deposition techniques. The HTS microstrip antenna using non-radiating feeding technique was fabricated using chemical wet-etching. Then it was compared with identical antenna patterned with evaporated gold. The diverse measured results have been reported in terms of the input impedance, resonant frequency and return loss. In additional, at around the critical temperature, the effect of kinetic inductance which affect the resonant characteristic of the HTS microstrip antenna was reported.

  • PDF

A Novel Method for Calcium Hardness Control of Closed OCC Recycling System

  • Ow, Say-Kyoun;Shin, Jong-Ho;Song, Bong-Keun;Ryu, Jeong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.164-171
    • /
    • 1999
  • A new technique for recycling process water was developed in order to reduce the calcium hardness of the closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by a reaction with sodium carbonate and the CaCO$_3$precipitates were easily removed from the system by a dissolved air flotation(DAF) method. After the DAF stage, CO$_2$-gas was purged into the water because the pH of Na$_2$CO$_3$-treated white water was reduced to neutral by CO$_2$gas. Since CaCO$_3$precipitate tends to stick onto the fine fiber surface and then is selectively removed from the water, a proper amount of suspended solid in the process water acts as an important factor in deciding the removal efficiency. By the application of Na$_2$CO$_3$addition - DAF - CO$_2$purging to the short circulated white water the calcium hardness was significantly reduced by 92% and more. The removal of calcium ions with fine fibers led to drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel (나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.

Maskless Pattern Fabrication on Si (100) Surface by Using Nano Indenter with KOH Wet Etching (나노인덴터와 KOH 습식 식각 기술을 병용한 Si(100) 표면의 마스크리스 패턴 제작 기술)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.640-646
    • /
    • 2003
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as potential application to fabricate the surface nanostructures because of its operational versatility and simplicity. The objective of the work is to suggest new mastless pattern fabrication technique using the combination of machining by nanoindenter and KOH wet etching. The scratch option of the nanoindenter is a very promising method for obtaining nanometer scale features on a large size specimen because it has a very wide working area and load range. Sample line patterns were machined on a silicon surface, which has a native oxide on it, by constant load scratch (CLS) of the Nanoindenter with a Berkovich diamond tip, and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structure was made because of masking effect of the affected layer generated by nano-scratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved patterns can be used as a mold that will be used for mass production processes such as nanoimprint or PDMS molding process. All morphological data of scratch traces were scanned using atomic force microscope (AFM).