• Title/Summary/Keyword: Wet blub temperature

Search Result 2, Processing Time 0.015 seconds

An Experimental Study on the Performance of the Louver Fin Type Heat Exchanger by the Change of the Driving Condition (운전조건 변화에 따른 루버휜 열교환기 성능변화에 관한 실험적 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Kim, Dong-Hwi;Park, Byung-Duck
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.440-445
    • /
    • 2008
  • The present study was investigated the effect of the driving condition on the performance of a louver fin and tube type heat exchanger under frosting condition. Heat transfer rate and pressure drop by frost were experimentally investigated. Effects of the wet blub temperature and the shape of a fin on heat transfer performances has been also investigated. The key parameters were fin type(louver and corrugate fin) and the wet blub temperature of air (0.5, 1.0, $1.5^{\circ}C$). The heat transfer performance of the louver fin and tube type heat exchanger was higher by 0.89% than the corrugate fin type. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models(Type A, B, C) were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the louver fin and tube type heat exchanger. As a experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was $0.2{\sim}0.4$ due to the high pressure drop.

  • PDF

Experimental Study on the Performance Change of the Fin and Tube Type Heat Exchanger by the Frosting (착상에 의한 휜관형 열교환기의 성능변화에 관한 실험적 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • The present study was investigates the effect of the parameters on the frost formation and heat transfer performance such as fin shape, air temperature and air velocity. Heat transfer rate and pressure drop by frost were experimentally investigated. Effect of the wet blub temperature and air velocity on the heat transfer performance has been also investigated. The heat transfer performance of the louver fin and tube type heat exchanger was higher by maximum of 0.85% than the corrugate fin type at the air temperature of $2.0/1.5^{\circ}C$. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the Type B louver fin heat exchanger. As an experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was only $0.2{\sim}0.4$ due to the high pressure drop.