• Title/Summary/Keyword: Wet Steam

Search Result 72, Processing Time 0.025 seconds

Effects of supersonic condensing nozzle flow on oblique shock wave (超音速 노즐흐름에 있어서 凝縮이 傾斜衝擊波에 미치는 影響)

  • 강창수;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.547-553
    • /
    • 1989
  • Last several stages of high capacity fossil power steam turbine and most stages of nuclear power steam turbine operate on wet steam. As a consequence, the flows in those cascades are accompanied by condensation, and the latent heat caused by condensation affects an oblique shock wave being generated at the vicinity of trailing of the blade. In the case of expanding of moist air through a suction type indraft wind tunnel, the effect of condensation affection the oblique shock wave generated by placing the small wedge into the supersonic part of the nozzle was investigated experimentally. In these connections, the relationship between condensation zone and reflection point of the incident oblique shock wave, angle between wedge bottom wall and oblique shock wave, and the variations of angles of incident and reflected shock waves due to the variation of initial stagnation relative humidity are discussed. Furthermore, the relationship between initial stagnation relative humidity and load working on the nozzle wall, obtained by measuring static pressure at the nozzle centerline, is discussed.

RELAP5 Analysis of the Loss-of-RHR Accident during the Mid-Loop Operation of Yonggwang Nuclear Units 3/4

  • J. J. Jeong;Kim, W. S.;Kim, K. D.;W. P. Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.403-410
    • /
    • 1995
  • A loss of the residual heat removal (RHR) accident during mid-loop operation of Yong-gwang Nuclear Units 3/4 was analyzed using the RELAP5/MOD3.1.2 code. In this work the following assumptions are used; (i) initially the reactor coolant system (RCS) above the hot leg center line is filled with nitrogen gas, (ii) two 3/4-inch diameter vent valves on the reactor vessel head and the top of pressurizer in the reactor coolant system are always open, and a level indicator is connected to the RMR suction line, (iii) the two steam generators are in wet layup status and the steam generator atmospheric dump valve assemblies are removed so that the secondary side pressure remains at nearly atmospheric condition throughout the accident, and (iv) the loss of RHR is presumed to occur at 48 hours after reactor shutdown. Findings from the RELAP5 calculations are (i) the core boiling begins at ∼5 min, (ii) the peak RCS pressure is ∼3.0 bar, which implies a possibility of temporary seal break, (iii) ∼94 % of the decay heat is removed by reflux condensation in the steam generator U-tubes in spite of the presence of noncondensable gas, (iv) the core uncovery time is evaluated to be 7.2 hours. Significant mass errors were observed in the calculations.

  • PDF

Dynamic modeling of a drying cylinder in Paper Plants (제지공정 내 건조 실린더의 동적 모사)

  • Gwak, Gi-Yeong;Yeo, Yeong-Gu;Kim, Yeong-Gon;Choe, Gyeong-Seok;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.117-126
    • /
    • 2004
  • This paper presents a linear model for heat transfer processes in the drying cylinders and the web in papar mill. The PDE model, functions include steam temperatures, wet temperatures, moisture constents, reel speed and basis weight were derived from operation data. The changes of wet temperatures and moisture contents in the drying cylinders and wets could be described. The Transfer function can be obtained through the state space model derived from the linearized PDE model. Stability of the drying cylinder model for paper plants and analysis of characteristics of process responses for changes in input variables are investigated.

  • PDF

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hun;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.230-248
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as Input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

  • PDF

Evaluation on the Applicability of Recycled Fine Aggregate to Precast Concrete Products (순환잔골재의 콘크리트 2차 제품 활용성 평가)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • While the amount of construction waste has not been changed much in discharge for last 10 years, the recycled resources refined from construction waste have been mainly applied to low-leveled one such as reclamation, back-fill, road base or subbase and so on. Thus this study addresses the applicability of recycled fine aggregate as a replaceable material in precast concrete. To evaluate the possibility, both of dry and wet processes were adopted as well as steam curing, widely used in the field for rapid producing. Most important experimental parameters were driven through preliminary experiments and were evaluated in terms of concrete properties. It is found from aggregate-replacement tests that all of consistency and strengths of concrete were decreased as the ratio of recycled fine aggregate increased, and the amount of decrease can be estimated using proposed equations. Though the recycled fine aggregate showed a decrease of concrete properties more or less, the applicability in large volume as a constituent of precast product was well noted from experimental results.

A Study on the Cold Pad Batch Dyeing of a String Wallcovering with Reactive Dyestuff (반응성염료를 이용한 스트링벽지 패딩염색에 관한 연구)

  • Lee, Joonhan;Kang, Youngwoong;Kim, Sunmee
    • Journal of Fashion Business
    • /
    • v.21 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • A string wallcovering is a kind of textile wallcovering which is made of cellulose fiber yarn laminated on base paper. Compared with normal paper or PVC wallpaper, a string wallcovering is preferred continually in the interior design market, as it is not only environmentally friendly but it also has less cost on mass production without the weaving process and has a natural visual effect, excellent functionality such as thermo keeping, permeability, sound absorption. However, in the dyeing process, it is not appropriate to use plenty of energy such as water, electricity, steam or chemicals considering the environmental trend and the government policy plenty of energy such as water, electricity, steam or chemicals. Currently, a string wallcovering is made of raw white yarn and padding with direct dye or pigment which includes toxic elements, especially the use of direct dye is restricted in a part of the developed country due to inclusion of azo. In this study, we researched dyeing based on cold pad batch dyeing of a string wallcovering with reactive dyestuff. The peel strength and bending depth test confirmed that the optimum adhesive type and spread amount improved the water resistance of the string wallcovering. Also, pad batch dyeing with optimum reactive dyestuff enhanced the color fastness to light and rubbing in dry and wet conditions. Additionally, for improvement of color fastness to rubbing in a wet condition, the additional treatment finishing without soaping process which is used water. The results of this study can be used as basic data for environmentally friendly and energy saving of the textile wallcovering.

Eruptive mechanisms and processes at Udo tuff cone, Udo Island, Korea (우도응회과의 분출기기구와 분출과정)

  • Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Eruptive mechanisms and processes at Udo tuff cone can be inferred from indicative characters of products, bedforms and lithofacies, and ring faults. In terms of bedforms and lithofa-cies in particular, massive lapilli tuff beds and chaotic lapilli tuff beds are derived from subaerial falls of aggregated tephra of wet tephra finger jets, occurring dominantly at the lower sequences of proximal part at the tuff cone. Crudely stratified lapilli tuff are derived from subaerial falls of slightly aggregated tephra of less wet tephra finger jets, whereas reversely graded lapilli tuff beds are from slightly disaggregated subaerial falls of continuous uprush. Both beds frequently occur in the middle sequences at proximal and near medial part of the tuff cone. Block and lapilli tephra lenses, ash-coated lapilli tephra beds(lenses) and thin-bedded tuff beds are derived from extremely disaggregated subaerial falls of dry tephra in the continuous uprush, frequently occurring at the upper sequences of medial part at the tuff cone. Udo tuff cone is a basaltic volcano emergent through the sea water surface while water could flood across or into the vent area. Emergence of the tuff cone was from the type-Surtseyan eruption characterized by earlier tephra finger jets and later continuous uprush columns of tephra with copious volumes of steam. Explosions began when boiling of wter produced a bubble column reducing the hydrostatic pres-sure, allowing exsolution of gases from the magma. This expansion of magma into a vesiculating froth fragmented the magma and permitted mixing of magma and water so that a more vigorous generation of steam could proceed. Tephra finger jetting explosions continued to build the crater rims, then remove water from the vent that their deposits flowed like slsurries until the continuous uprush explosion ensued. Continuous uprush explosions were associated with most rapid accumula-tion of tephra. The increasing volume rate led to partial removal of water from the vent area by the newly tephra ring so that more vigorous activity could be attended by a reducing water supply. This might restrain surplus of cold water entering the vent and thus enhance the vigour of the eruption by allowing optimal heat exchange. Eventually the crater became so deep and unsuported that piecemeal sliding, or massive subsidence on indipping ring faults, filled and closed the vent, and the cycle of explosions and collapse began anew.

  • PDF

A Study on Characteristics of pH Control with Amines in the Secondary Side of Nuclear Power Plants (원전 2차 계통에서 아민의 pH 제어 특성 연구)

  • Rhee, In-H.;Ahn, Hyun-Kyoung;Park, Byung-Gi;Jun, Gwon-Hyuk;Ho, Song-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3112-3118
    • /
    • 2010
  • The pH control agent in PWRs, to insure the integrity of steam generator, was changed from ammonia to ethanolamine(ETA) which decreased pH at condensate system and low pressure feedwater heater drain system, so that several amines were investigated for the selection of the optimum amine. There was no single alternative amine to meet the optimum condition. The more volatile ammonia provides the higher pH in condensate, while the less volatile ETA increases the pH in wet steam area. Thus, the combined amine of ammonia and ETA is able to equally raise the pH in both region so that the flow accelerated corrosion be reduced in the every system of the secondary side and the integrity of steam generator be also improved in pressurized water reactors (PWRs).

Modelling the wide temperature range of steam table using the neural networks (신경회로망을 사용한 넓은 온도 범위의 증기표 모델링)

  • Lee, Tae-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2008-2013
    • /
    • 2006
  • In numerical analysis on evaluating the thermal performance of the thermal equipment, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table itself cannot be used without modelling. In this study applicability of neural networks in modelling the wide temperature range of wet saturated vapor region was examined. the multi-layer neural network consists of a input layer with 1 node, two hidden layers with 10 and 20 nodes respectively and a output layer with 6 nodes. Quadratic and cubic spline interpoations methods were also applied for comparison. Neural network model revealed similar percentage error to spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the wide range of the steam table.