• Title/Summary/Keyword: Wet Sludge

Search Result 52, Processing Time 0.03 seconds

Study on preparation of precipitated calcium carbonate using recycling water of ready-mixed Concrete (레미콘 회수수를 이용한 침강성 탄산칼슘 제조에 관한 연구)

  • Shin, Jae Ran;Kim, Jae Gang;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.232-238
    • /
    • 2016
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. Also a shuttle mechanism of wet chemical absorption using MEA was utilized. The high concentration $CO_2$(A) and exhaust gas(B) was used for collecting carbon dioxide in the 30% MEA aqueous solution, and $CO_2$ was fixed with rate of 0.35 mg of $CO_2$ per mg of sludge through the liquid carbonation process. It was found from SEM data that calcium carbonate was mainly made up with spherical vaerite with the mixing of a small quantity of calcite.

Effect of Initial Concentration on Pilot-Scale Composting of Diesel-Contaminated Soil (초기농도가 파일럿 규모의 디젤 오염토양 콤포스팅 처리에 미치는 영향)

  • 임재량;박준석;황의영;남궁완
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.35-41
    • /
    • 2002
  • This study was conducted to evaluate the effect of initial concentration on pilot-scale composting of diesel-con-laminated soil. Sandy soi] was used in this study. Target contaminant, diesel oil, was spiked. at about 10,000, 25,000, and 50,000 mg TPH/kg of dry roil. Mit ratio of soil to sludge was 1:0.5 as wet weight basis. Removal efficiencies for initial concentrations of 12,966,23,894 and 51,042 mg TPH/kg were 90, 93 and 54%, respectively, during 33 days of composting. Normal alkanes in TPH ranged from 15 to 22% in initial soils. Volatilization of individual normal alkane in 1,999 mg n-alkanes/kgwas completed within 4 days, while n-alkane compounds of Cl1-Cl4 in 5,270 and 9,836 mg n-alkanes/kg were volatilized continuously during 33 days of composing operation. The first order degradation rate con-stants for 12,966, 23,894, and 51,042 mg TPH/kg were 0.058, 0.076, and 0.022/day, and those for 1,997 5,270, and 9,836 mg n-alkanes/kg were 0.093, 0.100, and 0.019/day, respectively. Considering TPH removal rate, $CO_2$porduction rate, and dehydrogenase activity, the concentration of 51,042 mg TPH/kg inhibited biodegradation of diesel-composting.

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Vermicomposting of Sludge from Milk Processing Industry (MPS) (지렁이를 이용한 우유가공 폐수처리장 슬러지의 효율적 퇴비화)

  • Seo, Jeoung-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.488-494
    • /
    • 2012
  • This study was conducted to determine the optimal ratio of sludges from milk processing industry (MPS), paper-mill industry (PMS) and night-soil treatment plant (NSS) for vermicomposting. Five different ratios, 0 : 80 : 20 (MPS-0), 25 : 60 : 15 (MPS-25), 50 : 40 : 10 (MPS-50), 75 : 20 : 5 (MPS-75), and 100 : 0 : 0 (MPS-100 : control) MPS : PMS : NSS by wet weight were tested in a small plot experiment. The experiment for each mixing ratio was performed for 2 weeks with the three replications. MPS-100 (100 : 0 : 0) only had the highest decomposition rate with 19.9%, followed by MPS-25, MPS-50, MPS-75 and MPS-0 with 19.5, 19.1, 17.6 and 16.7%, respectively. Except for MPS-100, Vermicomposting resulted in increase in ash, T-P, $NO_2{^-}-N$, $NO_3{^-}-N$, Mg, K, As, Cd and Cu, whereas moisture, VS (Volatile Substance), TKN (Total Kjeldahl Nitrogen), $NH_4{^+}-N$, Ca, Hg and Pb were lower in the final cast than the initial feed mixture. Meanwhile Zn showed very slight difference and Cr and Ni did not show any tendency between the feed mixture and the final cast. In the case of MPS-100, where the decomposition rate was the highest, all the heavy metals in the final cast except for Hg were increased. All the vermicomposts produced from five different mixing ratios of the vermicomposting sludges met the Korea Standard as by-product compost.

A Simulation Study on the Synthesis of Syngas from the Reforming Reaction of Biogas (바이오가스 개질 반응으로부터 합성가스 제조를 위한 반응 모사 연구)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • The amount of biogas increases as the amount of organic waste increases. Recently, biogas from organic waste have been made much efforts to utilize as a energy. In particular, the concentration of $CH_4$ and $CO_2$ generated from sewage sludge and livestock manure treatment are 60-70% and 30-35%, and $CH_4$ and $CO_2$ generated from food wastes are 60-80% and 20-40%. In case of landfill gas, $CH_4$ and $CO_2$ have a concentration of 40-60% and 40-60% respectively. Therefore, in order to use the biogas more widely, it is necessary to convert the biogas to methanol, LNG or DME. In this study, experiments were conducted to produce hydrogen and carbon monoxide through various biogas reforming reactions on $Ni/Ce-ZrO_2/Al2O3$ catalysts. The experiment of synthetic gas synthesis was carried out on a wide concentrations of methane and carbon dioxide, which were the major constituents of biogas from various organic wastes. The effect of $(O_2+CO_2)/CH_4$ (=R') on the yields of hydrogen and carbon monoxide, the conversion rate of methane and carbon dioxide was investigated. Also simulation for syngas synthesis on the $CO_2$ reforming of $CH_4$ was computed by employing total Gibbs free energy minimization method using PRO/II simulator, and compared with the experimental results on wet and dry reforming reaction of biogas.

Stability Evaluation of Phased Isolation Intra-Clarifier Ditch Process on Short-Term Hydraulic Shock Loading (단기 수리학적 충격부하시 침전지 내장형 상분리 산화구공정의 처리 안정성 평가)

  • Hong, Ki-Ho;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.791-799
    • /
    • 2005
  • The phased isolation intra-clarifier ditch system used in this study is a simplified novel process enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater in terms of elimination of additional pre-anaerobic reactor, external clarifier, recycle of sludge, and nitrified effluent recirculation by employing intrachannel clarifier. Laboratory-scale phased isolation ditch system was used to assess the treatability on municipal wastewater. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31days, and cycle times of 2~8hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 70~84%, and 65~90%, respectively. The rainfall in Korea is generally concentrated in summer because of site-specific characteristics. Especially, the wet season has set in on June to August. In combined sewers, seasonal variations are primarily a function of the amount of stormwater that enters the system. In order to investigate the effect of hydraulic shock loading on system performance, the laboratory-scale system was operated at an HRT of 6hours (two times of influent flowrate) during two cycles (8hours). The system performance slightly decreased by increasing of influent flowrate and decreasing of system HRT. Nitrification efficiency and TN removal were slightly decreased by increasing of influent flowrate (decreasing of system HRT), whereas, the denitrification was not affected by hydraulic shock loading. However, the higher system performance could be achieved again after four cycles. Thus, the phased isolation technology for enhanced biological nutrient removal in medium- and small-scale wastewater treatment plants suffering fluctuation of influent quality and flowrate.

Biodegradation of Cutting Oil by Pseudomonas aeruginosa KS47 (Pseudomonas aeruginosa KS47에 의한 절삭유의 생물학적 분해)

  • Kim, Lan-Hee;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Cutting oils are emulsionable fluids widely used in metal working processes. Their composition is mineral oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Cutting oils also affect colour, taste and odour of water, making it undesirable for domestic and industrial uses. In these days, conventional treatment methods as evaporation, membrane separation or chemical separation have major disadvantages since they generate a concentrated stream that is more harmful than the original waste. In this study, our purpose is to reduce cutting oils by using biological treatment. Eighty one strains were isolated from cutting waste oil of industrial waste water sludge under aerobic conditions. Among these strains, KS47, which removed 90.4% cutting oil in 48 hr, was obtained by screening test under aerobic conditions(pH 7, $28^{\circ}C$). KS47 was identified as Pseudomonas aeruginosa according to morphological, physiological and biochemical properties, 16S rDNA sequence, and fatty acid analysis. P. aeruginosa KS47 could utilize cutting oil as carbon source. In batch test, we obtained optimal degradation conditions(1.5 g/L cell concentration, pH 7, and temperature $30^{\circ}C$). Under the optimal conditions, 1,060 mg/L cutting oil was removed 83.7% (74.1 mg/L/hr).

Characteristics of Ammonia in Alkaline Stabilization Facility of Sludge from Sewage Treatment Plant (하수처리오니 알칼리 안정화 처리시설에서의 암모니아 발생특성)

  • Kim, Yong-Jun;Chung, David;Jeong, Mi-Jeong;Yoo, Hye-Young;Yoon, Cheol-Woo;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 2016
  • The characteristics of ammonia generated from alkaline stabilization facilities was investigated which are for organic sewage sludge from wastewater treatment plants. The highest concentration of ammonia was found in mixing and curing process in alkaline stabilization facility and ammonia mainly showed a range of 87.78 ppm($66.62mg/m^3$) to 1,933 ppm($1,467.01mg/m^3$) by detection tube. This is presumed to occur because nitrogen oxides are converted into ammonia as the sewage sludge is mixed with lime. In some facilities, hydrogen sulfide and methyl mercaptan were detected in relatively high concentrations, but odor materials except ammonia were not detected in most of the facilities. The concentration of ammonia caused by process was generally high in the order of "mixing > curing > output > storage > drying > input." It was found that odor compounds are removed by wet absorption using sulfuric acid and sodium hypochlorite in the 5 alkaline stabilization facilities currently in operation. Each facility was designed to meet the concentration of after-treatment emission in 1 ppm($0.76mg/m^3$), 50 ppm($37.95mg/m^3$) or 100 ppm($75.89mg/m^3$), but no facility satisfied the design standard for their emssion limit. In case of ammonia, some workplaces in alkaline stabilization facilities exceeded the exposure limits established by the Ministry of Labor. It appears that proper ventilation should be provided for the safety of workers in future. No odor compound including ammonia was found by detection tubes in the border of the facilities, but trace amounts of odor compounds are expected to exist, given the current operational status of facilities.

Effects of Initial Concentration on Composting of Diesel Contaminated Soil (디젤초기농도가 오염토양의 콤포스팅 처리에 미치는 영향)

  • Choi, Jung-Young;Namkoong, Wan;Park, Joon-Seok;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.120-127
    • /
    • 2002
  • This study was carried out to evaluate the effects of initial concentration on composting of diesel-contaminated soil. Silt loam was used in this study. Target contaminant, diesel oil, was spiked at about 2,000, 4,000, and 10,000mg/kg of dry soil, respectively. Mix ratio of soil to sludge was 1:0.3 as wet weight basis. Temperature was maintained at $20^{\circ}C$ Volatilization loss of TPH was 0.7-3.5% of the initial concentrations. Volatilization loss of TPH was not increased in proportion to the initial concentration. After 30 days of operation, 86% and 94% of the initial concentrations at about 2,000 and 10,000mg TPH/kg were biodegraded. Normal alkanes were degraded more rapidly than TPH. The compounds of C12 to C14 were volatilized greatly among n-alkanes. The first order degradation rate constants of about 2,000, 4,000, and 10,000mg TPH/kg were 0.079, 0.069, and 0.061/day, respectively. Produced-$CO_2$ and degraded-TPH were correlated highly regardless of the initial TPH concentration(r = 0.97-0.99).

  • PDF