• Title/Summary/Keyword: Wet $SiO_2$

Search Result 164, Processing Time 0.025 seconds

Surface Modification of Iron Oxide Particle by Silica-contained Materials (실리카계 물질에 의한 산화철 입자의 표면개질)

  • Ryu, Beyong-Hwan;Lee, Jung-Min;Koh, Jae-Cheon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.830-836
    • /
    • 1997
  • The surface modification of iron oxide particle produced from steel-pickled acid by sodium-contained materials was studied. The molar ratio of $SiO_2$ to $Na_2O$ of sodium silicate was 1, 2, 3.5, respectively. The dispersion stability of iron oxide suspension as functions of amount of silica and pH was evaluated by surface charge and sedimentation velocity of iron oxide particle. Then the amount of sodium silicate was determined to provide a dispersion stability of iron oxide particle above pH 7. Finally, the surface modification of iron oxide particle with sodium silicate as silica-contained materials was done by wet ball milling. In the results of study, the dispersion stability of silica modified iron oxide particle was largely depended on amount of silica and pH together. The untreated iron oxide was unstable at pH 8, i.e. isoelectric point, but, the surface modified iron oxide particle with 0.8wt% silica was stable above pH 5. The dispersion stability was enhanced with 0.2wt% of anionic polyelectrolyte.

  • PDF

The Influence of MnO doped on the Radiation Properties of Far-Infrared in Semiconduction PTC Thermistor. (반도성 PTC 서미스터의 원적외선 방사특성에 미치는 MnO의 영향)

  • Song, M.J.;Cho, H.S.;Jang, S.H.;Park, C.B.;Kim, C.H.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.204-208
    • /
    • 1991
  • In this paper, the radiation properties of a far-Infrared using a PTC thermistor, the $BaTiO_3$+1.63mol% $Al_2O_3$+3.75mol% $SiO_2$+1.25mol% $TiO_2$(1/3 $Al_2O_3+xSiO_2$+(1-x) $TiO_2$; total x: 6.67mol%) ceramics, in order to progress the grade resistivity characteristics, by adding an ethanol solution of $Mn(NO_3){\cdot}6H_2O$ was investigated. The ceramics was fabricated by wet-mill method. The sintering temperature read 1300-1350$[^{\circ}C]$ and the holding time was 3 hours. The quantity of $Sb_2O_3$ and $Al_2O_3$ for an activation of the far-infrared radiation in ceramics was doped. In sintering, R-T property was measured by varying the grade temperature. The anatase-lighting apparatus and microstructures by using XRD and SEM were observed. $Sb_2O_3$. oxides additive. affected the semiconducting and emissivity and MnO was devoted an increase of resistivity. The specimen which only $Sb_2O_3$ is added to was high appeared far-infrared emissivity and Mno was not affacted the far-infrared radiation. The ceramics shows that it is effective in the structure of the human bodies as organic bodies and can be applied as electron device.

  • PDF

A Study on SiC Buffer Layer Prepared by Ultra High Vacuum Electron Cyclotron Resonance CVD (초고진공 전자공명 플라즈마를 이용한 SiC buffer layer 형성에 관한 연구)

  • Joen, Woo-Gon;Pyo, Jae-Hwak;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.326-328
    • /
    • 1995
  • SiC buffer layers were grown on Si(100) substrates by ultra-high-vacuum electron cryclotron resonance plasma (UHV ECR plasma) from $CH_4/H_2$ mixture at 700$^{\circ}C$. The electron densities and temperature were measured by single probe. The axial plasma potentials measured by emissive probe had the double layer structure at positive substrate bias. Piranha cleaning was carried out as ex-situ wet cleaning. Clean and smooth silicon surface were prepared by in-situ hydrogen plasma cleaning at 540$^{\circ}C$. A short exposure to hydrogen plasma transforms the Si surface from 1$\times$1 to 2$\times$1 reconstruction. It was monitored by reflection high energy electron diffraction (RHEED). The defect densities were analysed by the dilute Schimmel etching. The results showed that the substrate bias is important factor in hydrogen plasma cleaning. The low base pressure ($5\times10^{-10}$ torr) restrains the $SiO_2$ growth on silicon surface. The grown layers showed different characteristics at various substrate bias. RHEED and K-ray Photoelectron spectroscopy study showed that grown layer was SiC.

  • PDF

The Influence of He flow on the Si etching procedure using chlorine gas

  • Kim, J.W.;Park, J.H.;M.Y. Jung;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.65-65
    • /
    • 1999
  • Dry etching technique provides more easy controllability on the etch profile such as anisotropic etching than wet etching process and the results of lots of researches on the characterization of various plasmas or ion beams for semiconductor etching have been reported. Chlorine-based plasmas or chlorine ion beam have been often used to etch several semiconductor materials, in particular Si-based materials. We have studied the effect of He flow rate on the Si and SiO2 dry etching using chlorine-based plasma. Experiments were performed using reactive ion etching system. RF power was 300W. Cl2 gas flow rate was fixed at 58.6 sccm, and the He flow rate was varied from 0 to 120 sccm. Fig. 1 presents the etch depth of si layer versus the etching time at various He flow rate. In case of low He flow rate, the etch rate was measured to be negligible for both Si and SiO2. As the He flow increases over 30% of the total inlet gas flow, the plasma state becomes stable and the etch rate starts to increase. In high Ge flow rate (over 60%), the relation between the etch depth and the time was observed to be nearly linear. Fig. 2 presents the variation of the etch rate depending on the He flow rate. The etch rate increases linearly with He flow rate. The results of this preliminary study show that Cl2/He mixture plasma is good candidate for the controllable si dry etching.

  • PDF

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

Mechanical Device Design for Solvent Usage Reduction for Amine Group Substitution and Production of NH2-HNT (아민기 치환 시 용매 사용량 절감을 위한 기계 장치 설계 및 NH2-HNT 제조)

  • Moon il Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2023
  • Halloysite nanotube (HNT) has a nanotube structure with the chemical formula of Al2Si2O5(OH)4 · nH2O and is a natural sediment of aluminosilicate. A lot of research has been conducted to improve the mechanical properties of epoxy composites by generating interactions between HNTs and polymers through surface treatment of HNTs, such as exchange of amine group as a terminal functional group. However, most of the surface modification methods are performed under wet conditions, which require a relatively large amount of time, manpower and solvent. In order to save time and simplify complicated procedures, a dry coating machine was designed and used for amine group exchange. Comparing the XPS results, it was found that the results of NH2-HNT prepared using a dry coating machine and the substitution through the wet method were not significantly different, and it has been confirmed that the amount of solvent used and the time savings can be made.

Fabrication of Microlens Integrated Silicon Structure for Optical Interconnects (광연결을 위한 마이크로 렌즈가 집적된 실리콘 구조 제작)

  • Min, Eun-Gyeong;Song, Yeong-Min;Lee, Yong-Tak;Yu, Jae-Su
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.491-492
    • /
    • 2009
  • We have fabricated a microlens integrated silicon (Si) structure for optical interconnects. To form microlenses, the Si wafer was wet-etched with $SiN_x$ mask in a HF:$HNO_3:C_2H_4O_2$ solution and then the holes were filled with a AZ9260 photoresist. The focal length of microlens increased in proportional to its radius of curvature (ROC). For the ROC of $100-161{\mu}m$, the focal lengths were obtained approximately between $160{\mu}m$ and $310{\mu}m$, in an agreement with the simulated values using a ray tracing method.

  • PDF

Novel Low-Temperature Deposition of the $SiO_2$ Thin Film using the LPCVD Method and Evaluation of Its Reliability in the DRAM Capacitors (LPCVD 방법에 의한 저온 $SiO_2$ 박막의 증착방법과 DRAM 커패시터에서의 그 신뢰성 연구)

  • Ahn Seong-Joon;Park Chul-Geun;Ahn Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.344-349
    • /
    • 2006
  • The low-temperature processing is very important for fabrication of the very large scale ($60{\sim}70nm$) semiconductor devices since the submicron transistors are sensitive to the thermal budget. Hence, in this work, we propose a noble low-temperature LPCVD (Low-Pressure Chemical Vapor Deposition) process for the $SiO_2$ film and evaluate the electrical reliability of the LTO (Low-Temperature Oxide) by making the capacitors with ONO (Oxide/Nitride/Oxide) structure. The leak current of the LTO was similar to that of the high-temperature wet oxide until the electric field was lower than 5 MV/cm. However, when the electric field was higher, the LTO showed much better characteristics.

  • PDF

Residual Metal Evolution with Pattern Density in Cobalt Nickel Composite Silicide Process (코발트 니켈 복합 실리사이드 공정에서 하부 형상에 따른 잔류 금속의 형상 변화)

  • Song, Oh-Sung;Kim, Sang-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.273-277
    • /
    • 2005
  • We prepared $0.25\~l.5um$ poly silicon gate array test group with $SiO_2$ spacers in order to employ NiCo composite salicide process from 15nm Ni/15nm Co/poly structure. We investigate the residual metal shape evolution by varying the rapid thermal silicide anneal temperature from $700^{\circ}C\;to\;1100^{\circ}C$. We observed the residual metals agglomerated into maze type and line type on $SiO_2$ field and silicide gate, respectively as temperature increased. We propose that lower silicide temperature would be favorable in newly proposed NiCo salicide in order to lessen the agglomeration causing the leakage and scum formation.

  • PDF

Effect of manufacturing and dispersion of zinc crystalline glaze on crystal formation (아연 결정유약의 제조 및 분산이 결정생성에 미치는 영향)

  • Lee, Chiyoun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2021
  • In the ceramic industry, a drastic decrease in crystalline formation was found even among the glazes well known for their high crystalline productivity when the ceramic glaze was stored in wet conditions over a period. This study aimed to investigate the reason for decreasing willemite crystals during storage. As the starting materials ZnO, calcined ZnO and frit 3110 are selected; the composition for zinc crystalline glazes was set through a three-component system with the materials. The firing condition was used from previous studies. The study was observed how wet conditions affected the crystallization of zinc crystalline glazes from a day to 24 weeks. The results were obtained by particle size analysis, XRD, Raman spectroscopy and SEM analysis. The results indicated that ZnO is advantageous in terms of willemite crystalline development and growth; however, Zn(OH)2 cluster, formed by the reaction with water during the storage, caused the decrease in ZnO level in the glaze. The reduction of ZnO in the glaze eventually interfered the willemite development and growth.