• 제목/요약/키워드: West Korea Bay

검색결과 207건 처리시간 0.025초

여자만 서수도 해역의 조류 및 조석평균류 특성 (Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea)

  • 추효상
    • 수산해양기술연구
    • /
    • 제55권3호
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

천수만의 수질환경특성과 장기변동 (Long-term Changes and Variational Characteristics of Water Quality in the Cheonsu Bay of Yellow Sea, Korea)

  • 박승윤;박경수;김형철;김평중;김전풍;박중현;김숙양
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.447-459
    • /
    • 2006
  • Long-term trends and distribution patterns of water quality were investigated in the Cheonsu Bay of Korea from 1983 to 2004. Water samples were collected at 4 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids (SS), chemical oxygen demand (COD), dissolved oxygen (DO) and nutrients. Spatial distribution patterns were not clear between stations but the seasonal variations were distinctive except COD, SS and nitrate. Twenty two year long-term trend analysis by PCA revealed the significant changes in water quality in the study area. Water quality during 1980's and early 1990's showed high SS, low nutrients and low COD which increased during the mid and late 1990's and early 2000's. Overall water duality in the Cheonsu Bay indicated the increase in nutrients and COD concentration.

비식생 갯벌의 블루카본 저장량 산정 및 영향인자 분석 (Calculation of Blue Carbon Stock and Analysis of Influencing Factors in Bare Tidal Flats)

  • 박경덕;강동환;조원기;소윤환;김병우
    • 한국환경과학회지
    • /
    • 제31권9호
    • /
    • pp.767-779
    • /
    • 2022
  • In this study, sediment cores were sampled from tidal flats (six sites) in the west and south coastal wetlands, the blue carbon stock in the tidal flat sediments was calculated, and the blue carbon stock characteristics and influencing factors were analyzed. The sediment particle size of the west coastal tidal flats was larger than that of the south coastal tidal flats, and the organic carbon content in the south coastal tidal flats was more than twice that of the west coastal tidal flats. Blue carbon stock per unit area was 28.4~36.8 Mg/ha on the west coastal tidal flats and 69.8~89.8 Mg/ha on the south coastal tidal flats, which was more than twice higher in the south coastal tidal flats than in the west coastal tidal flats. The total amount of blue carbon stock in the tidal flats was the highest in Suncheon Bay tidal flats at 153,626 Mg, and followed by Gomso Bay tidal flats at 141,750 Mg, Hampyeong Bay tidal flats at 58,420 Mg, Dongdae Bay tidal flats at 44,900 Mg, Cheonsu Bay tidal flats at 36,880 Mg, and Jinhae Bay tidal flats at 26,205 Mg. Blue carbon stock per unit area was higher in the south coastal tidal flats, but the total amount of blue carbon stock in the tidal flats was higher in the west coast. The slope of the regression function of blue carbon stock with respect to the organic carbon content in the tidal flat sediments was estimated to be about 0.05 to 0.07, and the slope of the regression function was higher in the west coastal tidal flats than in the south coastal tidal flats.

서해 가로림만 수온의 시계열 분석 (Time-series Analysis of Seawater Temperature in the Garolim Bay, the West Coast of Korea)

  • 양준용;조성희;이준수;한창훈;허승
    • 한국환경과학회지
    • /
    • 제30권7호
    • /
    • pp.585-595
    • /
    • 2021
  • We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange's interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11℃. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.

담수 유입에 따른 천수만 해역의 식물플랑크톤 군집 변화 (Changes in Phytoplankton Community Structure by Freshwater Input in the Cheonsu Bay, Korea)

  • 이승민;장수정;허승
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.1005-1017
    • /
    • 2019
  • Environmental factors and changes in phytoplankton community structure before (August 5, 2017), during (August 18 and 25) and after (August 30 and September 15) freshwater input were analyzed to investigate the effects of freshwater input from Ganwol and Bunam lakes located in the upper part of Cheonsu Bay. Due to the large amount of freshwater input in the Cheonsu Bay, the surface salinity of the bay decreased by more than 8 psu, and the thermocline existing in the bay during August weakened. In addition, hypoxic phenomena occurred temporarily in the bay as the low oxygen water mass from the freshwater lakes flowed into the bay, and chemical oxygen demand, nutrients, and N/P increased with freshwater inflow. The density of phytoplankton during the freshwater inflow increased owing to their input from the freshwater lakes. Diatom species (Eucampia zodiacus) dominated the phytoplankton community in the bay before freshwater input; nanoflagellates, chlorophyta, cyanobacteria, and diatoms (Pseudonitzschia delicatissima, Chateocceros spp.) entered during freshwater input; and after freshwater inflow ended, diatoms (Chateocceros spp.) again became predominant indicating a return to previous conditions. The amount of phytoplankton standing crops increased sharply due to the inflow of freshwater species into the bay on the second day of discharge compared to before freshwater input; pre-discharge conditions were restored at most stations except at some sites close to the Bunam Lake three days after discharge. Therefore, the large amount of freshwater flowing into the bay affects not only the geochemical circulation in the bay but also the phytoplankton community structure. In particular, the high concentration of nutrients in the freshwater lake affect the marine ecosystem of the bay during August.

A study on detecting the change of environment in west Seohan bay, North Korea using satellite Image

  • Jo Myung-Hee;Jo Yun-Won;Kim Sung-Jae;Kim Hyoung-Sub;Lee Kwang-Jae;Yoo Hong-Ryoug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.148-151
    • /
    • 2004
  • In this study the micro landform of tide flat in west Seohan bay. North Korea was classified and the change of this environment was detected by using Landsat TM. FTM+, KOMPAST. For this. ISODATA method of the unsupervised methods was used to classify the micro landform while tasseled cap method was used to detect the change of environment in west Seohan bay, North Korea by passing years. This study shows the possibility that the topography analysis and change especially in unapproachable area could be detected and monitored by using satellite images.

  • PDF

곰소만 조간대 퇴적물의 장기적 변화 (Long-term Variation of Tidal-flat Sediments in Gomso Bay, West Coast of Korea)

  • 장진호;류상옥;조영조
    • 한국지구과학회지
    • /
    • 제28권3호
    • /
    • pp.357-366
    • /
    • 2007
  • 곰소만 조간대 퇴적물의 장기적 변화를 조사하기 위하여 1991년과 2006년에 채취된 표층퇴적물 시료를 분석하고, 그 결과를 비교하였다. 만 입구 조간대에서는 실트와 점토의 함량이 감소하고 모래의 함량이 증가하였다. 만의 중부와 상부 조간대에서는 모래와 점토의 함량이 감소하고 실트의 함량이 증가하였다. 특히 점토의 함량은 주변의 다른 반폐쇄된 조간대에 비해 상대적으로 매우 낮은 함량 분포를 보였으며, 1991년에 비해서도 뚜렷하게 감소하는 경향을 보였다. 퇴적물 구성성분의 뚜렷한 함량 변화는 퇴적상의 변화를 초래하였다. 이러한 변화는 매립 및 호안건설에 의한 해안선의 변형과 간조선 부근에 빽빽하게 설치된 양식장의 구조물, 그리고 곰소만 북쪽의 새만금 방조제 건설 등에 의한 수리에너지 조건의 변화에 기인한 것으로 해석된다.

진주만 해역 수온의 시공간적 변동 특성 (Temporal and Spatial Variations of Sea Surface Temperature in Jinju Bay in the South Coast of Korea)

  • 추효상;윤은찬
    • 해양환경안전학회지
    • /
    • 제21권4호
    • /
    • pp.315-326
    • /
    • 2015
  • 진주만해역 수온의 시공간적 변동특성을 장기 연속수온관측 자료를 이용하여 분석하였다. 수온은 1월 말 최저, 8월 초 최대이고 만 북쪽이 중앙과 남쪽보다 계절변동이 작다. 하계 최고수온의 최저와 최고는 지족수로 주변에 출현한다. 노량수로와 대방수로는 조류 유 출입에 따른 수층 간 연직혼합으로 수온변동이 작다. 외해수 영향이 작은 만 남쪽은 동계 해면냉각과 하계 가열에 의한 변동이 현저하다. 바람은 대방수로 주변이 강해 조류와 함께 이 해역 표층의 혼합정도에 큰 영향을 준다. 만내수온이 균일하게 낮고 소조기 서풍이 강해져 노량수로에 동쪽방향 항류가 출현할 때 만 북쪽 해역에 난수가 유입되는 양상을 보여준다. 노량수로 해역은 7~20일의 장주기, 창선도 서쪽과 지족수로는 장주기와 반일주기, 만 중앙은 장주기와 일일주기 수온변동이 우세하다. Coherence 분석결과, 노량수로의 수온변동은 만 내 정점과 상관성이 크고 위상이 앞서나 대방수로보다는 느리다. 대방수로의 수온변동은 만 서쪽과 중앙 일부에 영향을 준다. 상호상관계수분석으로 진주만은 노량수로역, 만 북쪽 수렴발산역, 대방수로역, 창선도연안수역, 만 중앙혼합수역, 만 중앙내 만수역으로 분류되었다.

Analysis of Surface Water Temperature Fluctuation and Empirical Orthogonal Function in Cheonsu Bay, Korea

  • Hyo-Sang Choo;Jin-Young Lee;Kyeung-Ho Han;Dong-Sun Kim
    • 해양환경안전학회지
    • /
    • 제29권3호
    • /
    • pp.255-269
    • /
    • 2023
  • Surface water temperature of a bay (from the south to the north) increases in spring and summer, but decreases in autumn and winter. Due to shallow water depth, freshwater outflow, and weak current, the water temperature in the central to northern part of the bay is greatly affected by the land coast and air temperature, with large fluctuations. Water temperature variations are large in the north-east coast of the bay, but small in the south-west coast. The difference between water temperature and air temperature is greater in winter and in the south-central part of the bay than that in the north to the eastern coast of the bay where sea dykes are located. As the bay goes from south to north, the range of water temperature fluctuation and the phase show increases. When fresh water is released from the sea dike, the surrounding water temperature decreases and then rises, or rises and then falls. The first mode of empirical orthogonal function (EOF) represents seasonal variation of water temperature. The second mode represents the variability of water temperature gradient in east-west and north-south directions of the bay. In the first mode, the maximum and the minimum are shown in autumn and summer, respectively, consistent with seasonal distribution of surface water temperature variance. In the second mode, phases of the coast of Seosan~Boryeong and the east coast of Anmyeon Island are opposite to each other, bordering the center of the deep bay. Periodic fluctuation of the first mode time coefficient dominates in the one-day and half-day cycle. Its daily fluctuation pattern is similar to air temperature variation. Sea conditions and topographical characteristics excluding air temperature are factors contributing to the variation of the second mode time coefficient.

Tidal Computations For Inchon Bay

  • Choi, Byung Ho
    • 한국해양학회지
    • /
    • 제15권2호
    • /
    • pp.112-122
    • /
    • 1980
  • A two-dimensional non-linear tidal model has been established to calculate the M$\_$2/ tide of Inchon Bay in the west coast of Korea. Cartesian coordinates are used for the derivation of the governing equations and account is taken of extensive drying boundaries (tidal flats) which are exposed at low tides. The tidal amplitudes and phases computed from the model agree well with those known from observation lying within bounds 5cm in amplitude and 5 in phase relative to the observed results. The work represents a further stage in the development including extensive sea measurements capable of application in various coastal engineering problems encountered in Inchon Bay area.

  • PDF