• Title/Summary/Keyword: West Korea Bay

Search Result 207, Processing Time 0.024 seconds

Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea (여자만 서수도 해역의 조류 및 조석평균류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

Long-term Changes and Variational Characteristics of Water Quality in the Cheonsu Bay of Yellow Sea, Korea (천수만의 수질환경특성과 장기변동)

  • Park, Soung-Yun;Park, Gyung-Soo;Kim, Hyung-Chul;Kim, Pyoung-Joong;Kim, Jeon-Poong;Park, Jung-Hyeon;Kim, Sug-Yang
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.447-459
    • /
    • 2006
  • Long-term trends and distribution patterns of water quality were investigated in the Cheonsu Bay of Korea from 1983 to 2004. Water samples were collected at 4 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids (SS), chemical oxygen demand (COD), dissolved oxygen (DO) and nutrients. Spatial distribution patterns were not clear between stations but the seasonal variations were distinctive except COD, SS and nitrate. Twenty two year long-term trend analysis by PCA revealed the significant changes in water quality in the study area. Water quality during 1980's and early 1990's showed high SS, low nutrients and low COD which increased during the mid and late 1990's and early 2000's. Overall water duality in the Cheonsu Bay indicated the increase in nutrients and COD concentration.

Calculation of Blue Carbon Stock and Analysis of Influencing Factors in Bare Tidal Flats (비식생 갯벌의 블루카본 저장량 산정 및 영향인자 분석)

  • Park, Kyeong-deok;Kang, Dong-hwan;Jo, Won Gi;So, Yoon Hwan;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.767-779
    • /
    • 2022
  • In this study, sediment cores were sampled from tidal flats (six sites) in the west and south coastal wetlands, the blue carbon stock in the tidal flat sediments was calculated, and the blue carbon stock characteristics and influencing factors were analyzed. The sediment particle size of the west coastal tidal flats was larger than that of the south coastal tidal flats, and the organic carbon content in the south coastal tidal flats was more than twice that of the west coastal tidal flats. Blue carbon stock per unit area was 28.4~36.8 Mg/ha on the west coastal tidal flats and 69.8~89.8 Mg/ha on the south coastal tidal flats, which was more than twice higher in the south coastal tidal flats than in the west coastal tidal flats. The total amount of blue carbon stock in the tidal flats was the highest in Suncheon Bay tidal flats at 153,626 Mg, and followed by Gomso Bay tidal flats at 141,750 Mg, Hampyeong Bay tidal flats at 58,420 Mg, Dongdae Bay tidal flats at 44,900 Mg, Cheonsu Bay tidal flats at 36,880 Mg, and Jinhae Bay tidal flats at 26,205 Mg. Blue carbon stock per unit area was higher in the south coastal tidal flats, but the total amount of blue carbon stock in the tidal flats was higher in the west coast. The slope of the regression function of blue carbon stock with respect to the organic carbon content in the tidal flat sediments was estimated to be about 0.05 to 0.07, and the slope of the regression function was higher in the west coastal tidal flats than in the south coastal tidal flats.

Time-series Analysis of Seawater Temperature in the Garolim Bay, the West Coast of Korea (서해 가로림만 수온의 시계열 분석)

  • Yang, Joon-Yong;Cho, Sunghee;Lee, Joon-Soo;Han, Changhoon;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.585-595
    • /
    • 2021
  • We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange's interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11℃. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.

Changes in Phytoplankton Community Structure by Freshwater Input in the Cheonsu Bay, Korea (담수 유입에 따른 천수만 해역의 식물플랑크톤 군집 변화)

  • Lee, Seung-Min;Chang, Soo-Jung;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1005-1017
    • /
    • 2019
  • Environmental factors and changes in phytoplankton community structure before (August 5, 2017), during (August 18 and 25) and after (August 30 and September 15) freshwater input were analyzed to investigate the effects of freshwater input from Ganwol and Bunam lakes located in the upper part of Cheonsu Bay. Due to the large amount of freshwater input in the Cheonsu Bay, the surface salinity of the bay decreased by more than 8 psu, and the thermocline existing in the bay during August weakened. In addition, hypoxic phenomena occurred temporarily in the bay as the low oxygen water mass from the freshwater lakes flowed into the bay, and chemical oxygen demand, nutrients, and N/P increased with freshwater inflow. The density of phytoplankton during the freshwater inflow increased owing to their input from the freshwater lakes. Diatom species (Eucampia zodiacus) dominated the phytoplankton community in the bay before freshwater input; nanoflagellates, chlorophyta, cyanobacteria, and diatoms (Pseudonitzschia delicatissima, Chateocceros spp.) entered during freshwater input; and after freshwater inflow ended, diatoms (Chateocceros spp.) again became predominant indicating a return to previous conditions. The amount of phytoplankton standing crops increased sharply due to the inflow of freshwater species into the bay on the second day of discharge compared to before freshwater input; pre-discharge conditions were restored at most stations except at some sites close to the Bunam Lake three days after discharge. Therefore, the large amount of freshwater flowing into the bay affects not only the geochemical circulation in the bay but also the phytoplankton community structure. In particular, the high concentration of nutrients in the freshwater lake affect the marine ecosystem of the bay during August.

A study on detecting the change of environment in west Seohan bay, North Korea using satellite Image

  • Jo Myung-Hee;Jo Yun-Won;Kim Sung-Jae;Kim Hyoung-Sub;Lee Kwang-Jae;Yoo Hong-Ryoug
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.148-151
    • /
    • 2004
  • In this study the micro landform of tide flat in west Seohan bay. North Korea was classified and the change of this environment was detected by using Landsat TM. FTM+, KOMPAST. For this. ISODATA method of the unsupervised methods was used to classify the micro landform while tasseled cap method was used to detect the change of environment in west Seohan bay, North Korea by passing years. This study shows the possibility that the topography analysis and change especially in unapproachable area could be detected and monitored by using satellite images.

  • PDF

Long-term Variation of Tidal-flat Sediments in Gomso Bay, West Coast of Korea (곰소만 조간대 퇴적물의 장기적 변화)

  • Chang, Jin-Ho;Ryu, Sang-Ock;Jo, Yeong-Jo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.357-366
    • /
    • 2007
  • In Gomso Bay, on the west coast of Korea, the surface sediments sampled in 1991 and 2006 were analysed to identify the long-term variations of tidal flat sediments. Silt and clay contents have decreased in the bay-mouth tidal flats whereas sand and clay contents have decreased on the inner-bay and bay-head tidal flats over the last 15 year period. In particular, the clay contents of the tidal flats in 2006 were relatively low when compared to those of both tidal flats adjacent to other semi-enclosed bays and those of the tidal flats in 1991. The variations of textural compositions in the tidal flat sediments have led to changes of the sedimentary facies. It indicates that the changes must have been made by the changes of hydrodynamic conditions impacted by human activities, such as the construction of sea-walls, land reclamation, structures of farms constructed compactly near the low water line, and the Saemangeum dyke constructed in the northern part of the area where this research was conducted.

Temporal and Spatial Variations of Sea Surface Temperature in Jinju Bay in the South Coast of Korea (진주만 해역 수온의 시공간적 변동 특성)

  • Choo, Hyo-Sang;Yoon, Eun-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2015
  • Temporal and spatial variations of surface water temperature in Jinju Bay for the period of 2010~2011 were studied using the data from temperature monitoring buoys deployed at 17 stations in the south coast of Korea. Water temperature shows the maximum late in January and the minimum early in August. Seasonal variation of water temperatures at the north part of the bay is smaller than the middle and the south. In summer, the lowest and the highest of maximum water temperature are distributed around Jijok Channel which is located at the south of the bay. The fluctuations of water temperatures at Noryang and Daebang Channel are smaller than others because of vertical mixing caused by passage of strong tidal currents. Wind and strong currents affect on the stratification of the surface water layer near Daebang Channel. High temperatures come in frequently around the north area when eastward constant flows appear at neap tide as blowing westerly in the springtime at Noryang Channel. Spectral analyses of temperature records show significant peaks at 7~20 day periods at Noryang Channel, 7~20 day and semidiurnal at the west coast of Changsun Island and Jijok Channel and 7~20 day and diurnal at the middle of the bay. Temperature fluctuation at Noryang Channel shows high coherence and has leading phase with those at other stations in the bay. However, the phase of temperature fluctuation at Noryang Channel falls behind that at Daebang Channel. Daebang Channel has an influence on the temperature fluctuation only at the west and middle part of the bay. Cross-correlation analyses for the temperature fluctuation show that Jinju Bay could be classified into six areas; Noryang Channel, the area of convergence and divergence at the north, Daebang Channel, the west coast of Changsun Island, the mixing area at the middle of the bay and the south inside of the bay, respectively.

Analysis of Surface Water Temperature Fluctuation and Empirical Orthogonal Function in Cheonsu Bay, Korea

  • Hyo-Sang Choo;Jin-Young Lee;Kyeung-Ho Han;Dong-Sun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.255-269
    • /
    • 2023
  • Surface water temperature of a bay (from the south to the north) increases in spring and summer, but decreases in autumn and winter. Due to shallow water depth, freshwater outflow, and weak current, the water temperature in the central to northern part of the bay is greatly affected by the land coast and air temperature, with large fluctuations. Water temperature variations are large in the north-east coast of the bay, but small in the south-west coast. The difference between water temperature and air temperature is greater in winter and in the south-central part of the bay than that in the north to the eastern coast of the bay where sea dykes are located. As the bay goes from south to north, the range of water temperature fluctuation and the phase show increases. When fresh water is released from the sea dike, the surrounding water temperature decreases and then rises, or rises and then falls. The first mode of empirical orthogonal function (EOF) represents seasonal variation of water temperature. The second mode represents the variability of water temperature gradient in east-west and north-south directions of the bay. In the first mode, the maximum and the minimum are shown in autumn and summer, respectively, consistent with seasonal distribution of surface water temperature variance. In the second mode, phases of the coast of Seosan~Boryeong and the east coast of Anmyeon Island are opposite to each other, bordering the center of the deep bay. Periodic fluctuation of the first mode time coefficient dominates in the one-day and half-day cycle. Its daily fluctuation pattern is similar to air temperature variation. Sea conditions and topographical characteristics excluding air temperature are factors contributing to the variation of the second mode time coefficient.

Tidal Computations For Inchon Bay

  • Choi, Byung Ho
    • 한국해양학회지
    • /
    • v.15 no.2
    • /
    • pp.112-122
    • /
    • 1980
  • A two-dimensional non-linear tidal model has been established to calculate the M$\_$2/ tide of Inchon Bay in the west coast of Korea. Cartesian coordinates are used for the derivation of the governing equations and account is taken of extensive drying boundaries (tidal flats) which are exposed at low tides. The tidal amplitudes and phases computed from the model agree well with those known from observation lying within bounds 5cm in amplitude and 5 in phase relative to the observed results. The work represents a further stage in the development including extensive sea measurements capable of application in various coastal engineering problems encountered in Inchon Bay area.

  • PDF