• Title/Summary/Keyword: Well-regulated

Search Result 911, Processing Time 0.025 seconds

Korean National Emissions Inventory System and 2007 Air Pollutant Emissions

  • Lee, Dae-Gyun;Lee, Yong-Mi;Jang, Kee-Won;Yoo, Chul;Kang, Kyoung-Hee;Lee, Ju-Hyoung;Jung, Sung-Woon;Park, Jung-Min;Lee, Sang-Bo;Han, Jong-Soo;Hong, Ji-Hyung;Lee, Suk-Jo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.278-291
    • /
    • 2011
  • Korea has experienced dramatic development and has become highly industrialized and urbanized during the past 40 years, which has resulted in rapid economic growth. Due to the industrialization and urbanization, however, air pollutant emission sources have increased substantially. Rapid increases in emission sources have caused Korea to suffer from serious air pollution. An air pollutant emissions inventory is one set of essential data to help policymakers understand the current status of air pollution levels, to establish air pollution control policies and to analyze the impacts of implementation of policies, as well as for air quality studies. To accurately and realistically estimate administrative district level air pollutant emissions of Korea, we developed a Korean Emissions Inventory System named the Clean Air Policy Support System (CAPSS). In CAPSS, emissions sources are classified into four levels. Emission factors for each classification category are collected from various domestic and international research reports, and the CAPSS utilizes various national, regional and local level statistical data, compiled by approximately 150 Korean organizations. In this paper, we introduced for the first time, a Korean national emissions inventory system and release Korea's official 2007 air pollutant emissions for five regulated air pollutants.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Development of Handling Guidelines for the Safety and Health of Transporters of Hazardous Chemicals - Focusing on Safety Containers and Packaging for Delivery of Hazardous Chemicals Used for Reagents - (유해화학물질 운반자의 취급안전보건 관리를 고려한 취급기준 마련 - 유해화학물질 시약 등 택배 안전용기 및 포장기준을 중심으로 -)

  • Im, JiYoung;Jeong, JaeHyeong;Sung, HwaKyung;Kwon, YongMin;Ryu, JiSung;Lee, JinHong;Lee, JiHo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • Objectives: In this study, we analyzed the current state of delivery containers and packages and established handling guidelines to safely transport delivery containers and packages for use in research, testing, and examination reagents. Methods: Handling guidelines were revised in such categories as maintenance of the handling facilities, storage, loading and unloading, containers and packages, transportation, etc. In addition, we analyzed the current state of domestic sales for hazardous chemicals used for research, testing, and examination reagents, and investigated the handling guidelines related to delivery transportation in the USA, EU, and Japan by chemical property. Results: There are 6,160 companies selling hazardous chemicals. Among them, the 476 companies selling reagents for use in research, testing, and examination were investigated. Total amounts handled reached 425,000 tons, contributing to 0.2% of the total. For delivery transportation, internal containers and packaging was specified for chemical properties as follows: within 1 L for flammable gas, within 5 L for flammable liquid, and within 18 L for others. In addition, the maximum size of the outer package was set within 130 cm for total length, width, and height, and no dimension of the packaging could exceed 60 cm. Sixty-four hazardous chemicals with explosiveness or acute inhalation toxicity were prohibited for delivery transportation. Conclusion: Specified handling guidelines for inner and outer containers as well as packaging were regulated for delivery transportation of hazardous chemicals used for reagents. In addition, 64 hazardous chemicals were prohibited for delivery transportation. These are designed to prevent transportation accidents involving hazardous chemicals for reagents and thus protect the safety and health of transporters who handle hazardous chemicals.

MicroRNA-296-5p Promotes Invasiveness through Downregulation of Nerve Growth Factor Receptor and Caspase-8

  • Lee, Hong;Shin, Chang Hoon;Kim, Hye Ree;Choi, Kyung Hee;Kim, Hyeon Ho
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.254-261
    • /
    • 2017
  • Glioblastomas (GBM) are very difficult to treat and their aggressiveness is one of the main reasons for this as well as for the frequent recurrences. MicroRNAs post-transcriptionally regulate their target genes through interaction between their seed sequence and 3'UTR of the target mRNAs. We previously reported that miR-296-3p is regulated by neurofibromatosis 2 (NF2) and enhances the invasiveness of GBM cells via SOCS2/STAT3. In this study, we investigated whether miR-296-5p, which originates from the same precursor miRNA as miR-296-3p, can increase the invasiveness of GBM cells. It was observed that miR-296-5p potentiated the invasion of various GBM cells including LN229, T98G, and U87MG. Through bioinformatics approaches, two genes were identified as miR-296-5p targets: caspase-8 (CASP8) and nerve growth factor receptor (NGFR). From results obtained from Ago2 immunoprecipitation and luciferase assays, we found that miR-296-5p downregulates CASP8 and NGFR through direct interaction between seed sequence of the miRNA and 3'UTR of the target mRNA. Knockdown of CASP8 or NGFR also increased the invasive ability of GBM cells, indicating that CASP8 and NGFR are involved in potentiation of invasiveness by miR-296-5p. Consistent with our findings, CASP8 was downregulated in brain metastatic lung cancer cells, which have a high level of miR-296-5p, compared to parental cells, suggesting that miR-296-5p may be generally associated with the acquisition of invasiveness. Collectively, our results implicate miR-296-5p as a potential cause of invasiveness in cancer and suggest it as a promising therapeutic target for GBM.

Development of Multi-rotational Prosthetic Foot for Lower Limb Amputee (하지 절단자를 위한 다축 회전이 가능한 인공발의 개발)

  • Shin, Hyunjun;Park, Jin-Kuk;Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Shin-Ki
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • Movements of the lower limb are important for normal walking and smooth oscillation of the center of gravity. The ankle rotations such as dorsi-flexion, plantar-flexion, inversion and eversion allows the foot to accommodate to ground during level ground walking. Current below knee (B/K) prostheses are used for replacing amputated ankle, and make it possible for amputees to walk again. However, most of amputees with B/K prostheses often experience a loss of terrain adaptability as well as stability because of limited ankle rotation. This study is focused on the development of multi-rotational prosthetic foot for lower limb amputee. Our prosthesis is possible for amputees to easily walk in level ground by rotating ankle joint in sagittal plane and adapt to the abnormal terrain with ankle rotation in coronal plane. The resistance of ankle joint in the direction of dorsi/plantar-flexion can be manually regulated by hydraulic damper with controllable nozzle. Furthermore, double layered rubber induce the prosthesis adapt to irregular ground by tilting itself in direction of eversion and inversion. The experimental results highlights the potential that our prosthesis induce a normal gait for below knee amputee.

Effects of Moxi-tar Herbal Acupuncture at Cheonchu (ST25) on Crohn's Disease Induced by TNBS in Mices (천추(天樞) 상응부위에 구진약침(灸津藥針) 자극(刺戟)이 TNBS로 유도(誘導)된 크론병에 미치는 영향)

  • Kim, Yong-Tae;Ahn, Seong-Hun;Kim, Jae-Hyo;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.25 no.2
    • /
    • pp.159-177
    • /
    • 2008
  • Objectives : Crohn's disease is a severe chronic inflammation that is treated mainly by immunosuppression, which often has serious side effects. There is need to develop new therapeutic methods or drugs that have few side effects in order to treat this disease. Acupuncture with Moxi-tar at Cheonchu (ST25) has anti-inflammatory properties, but the mechanism of its anti-inflammatory actions is unclear. We investigated the protective effects and speculated the mechanisms of acupuncture with Moxi-tar at ST25 on trinitrobenzene sulfonic acid (TNBS) induced colitis in mice which is a well known Crohn's disease animal model. Methods : 5 % TNBS was treated at day 1 and day 7 into rectum of mice. To investigate therapeutic effects of acupuncture with Moxi-tar at ST25, acupuncture was carried out on day 3, and day 6. For the data analysis, we observed macroscopic and microscopic findings of the colon. Weight and width of the colon, degree of damage, changes of body weight, and myeloperoxygenase (MPO) activity were checked. For analysing protein expression, we carried out immunohistochemical staining and Western blot. For analysing mRNA expression, RT-PCR was carried out. Results : TNBS induced damages on the colon of mice, while acupuncture of Moxi-tar at ST25 suppressed TNBS mediated damages similar to those on the colons of mice in the control (not treated with TNBS) group. The average body weight of TNBS treated mice (77.4%) was decreased compared with that of the control mice (105%), and acupuncture with Moxi-tar at ST25 suppressed the loss of body weight caused by TNBS (from 77.4% to 95.3%). TNBS induced infiltration of immune cells in all layers of the colon while acupuncture with Moxi-tar at ST25 suppressed infiltration of immune cells caused by TNBS. Furthermore, acupunctured with Moxi-tar at ST25 suppressed macro-, micro- colonic damages caused by TNBS. Acupunctured with Moxi-tar at ST25 dramatically improved the clinical and histopathological symptoms such as the increase in weight of the distal colon and the MPO activity in TNBS-induced colitis. Acupuncture with Moxi-tar at ST25 down-regulated the nuclear transcription factor kappa B ($NF-{\kappa}B$) activity and suppressed tumor necrosis factor-a (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-1${\beta}$), and intracellular adhesion molecule-1 (ICAM-1) expressions caused by TNBS. Conclusions : Acupuncture with Moxi-tar at ST25 helps recovery from the TNBS-induced colonic damage by down-regulation of $NF-{\kappa}B$ activity and suppressing of TNF-${\alpha}$, IL-1${\beta}$, and ICAM-1 expressions. This may be an important method for the treatment of Crohn's disease.

  • PDF

Non-toxic and Anti-oxydative effect of Dioscoreae Rhizoma on PC12 Cell (안태(安胎)에 활용되는 산약(山藥)의 신경세포주에 대한 안전성 및 항산화효과에 대한 연구)

  • Nam, Ju-Young;Roh, Jin-Ju;Seung, Jun-Ho;Son, Mi-Young;Khil, Mee-Jeong;Sung, Jung-Suk;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.4
    • /
    • pp.61-76
    • /
    • 2006
  • Purpose : This study examined the non-toxic and the anti-oxidative effect of Dioscoreae Rhizoma on PC12 cells. Sanyak(Dioscoreae Rhizoma; chinese yam, shan yao) is well-known for its curing power for kidney, lung, spleen. Tonifies and augments the spleen and stomach. Tonifies the lung gi and augments the kidney yin. Tonifies the kidneys and also stabilizes and binds. it also binds the essence and treats spermatorrhea, frequent urination, and vaginal discharge. We are therefore interested in whether Dioscoreae Rhizoma is capable of causing abnormal apoptosis processes, and whether this condition can be rectified through Dioscoreae Rhizoma herb treatment. Methods : We used aqueous extract to treat PC12 cells with different concentrations treated with a water or a MeOH extract of Dioscoreae Rhizoma (0, x10, x20, x40, x80). The MTT (3, (4, 5-dimethyl-thiazol) 2, 5-diphenyl-tetraxolium bromide) reduction assay was employed to quantify the differences in cell activity and viability. The Bax expression level was monitored using western-blotting techniques. The patterns of the changes in expression were scanned and analyzed. Results : Bax and GSK-3${\beta}$ promotes cell death and down-regulated during the development of the PC12 cells. This is indicated that Dioscoreae Rhizoma is capable of inducing apoptosis in PC12 cells. The induced cell death and significantly inhibited by Dioscoreae Rhizoma, which can be explained by the increase in the inhibition of Bax and GSK-3${\beta}$ expression. It was also shown that Dioscoreae Rhizoma inhibits the release of $H_2O_2$ and prevents lipid peroxidation. Furthermore, the accumulation of wild type Bax protein significantly downregulated in a dose-dependent manner upon treatment with Dioscoreae Rhizoma. Conclusion : In conclusion, Dioscoreae Rhizoma can induce apoptosis via a Bax-dependent pathway or GSK-3${\beta}$ dependent pathway in PC12 cells into anti-oxidant and protective effect.

  • PDF

Similarity of Gene Expression Profiles in Primary Brain Tumors with the Toxic Mechanism by Environmental Contaminants

  • Kim, Yu-Ri;Kim, Ki-Nam;Park, Yoon-Hee;Ryu, Yeon-Mi;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Lee, Kweon-Haeng;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Recently, a large number of clinical experiments have shown that exposure of organic pollutants lead to various cancers through the abnormal cell growth. Environmental pollutants, such as 2, 3, 7, 8-Tetrachloro dibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs), are carcinogen and are known to cause the cognitive disability and motor dysfunction in the developing of brain. The effects of these pollutants on neurodevelopmental disorder is well established, but the underlying mechanism(s) and similarity of gene expression profiles in human brain tumors with organic pollutants still remain unclear. In this study, we first examined the gene expression profiles in glioblastomas compared with meningioma that are kinds of primary human brain tumor by using human cDNA microarray. The results of cDNA microarray analysis revealed that 26 genes were upregulated (Z-ratio>2.0) and 14 genes were downregulated (Z-ratio<-2.0) in glioblastoma compared with meningioma. From the altered gene patterns, mitogen-activated protein kinase (MAPK) signaling related genes, such as MAP2K3, MAP3K11 and jun activated domain binding protein, and transcription factors, such as UTF2 and TF12, were upregulated in glioblastoma. Also, we tried to investigate the relation between important genes up- and down-regulated in giloblastoma and various organic pollutants. Therefore, the identification of changes in the patterns of gene expression may provide a better understanding of the molecular mechanisms involved in human primary brain tumors and of the relation between gene expression profiles and organic pollutants in brain tissue.

Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase) in rat cortical neurons in culture (배양한 흰주 대뇌세포에서 2,3,7,8-tetrachlorodibenzo-p-dioxin 이 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase)의 표현에 미치는 영향)

  • Cho, Sun-Jung;Jung, Jae-Seob;Kim, Deock-Kyu;Shin, Seung-Chul;Go, Ok;Jung, Yong-Wook;Ko, Bok-Hyun;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.346-353
    • /
    • 2001
  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) a prototype of the highly toxid halogenated arylhydrocarbons, bioaccumulates in the food chain and induces a complex spectrum of pathological responses. However, its effect on the nerve system is relatively not well studied. In this study we evaluated TCDDs cytotoxicity on the cortical cell and investigated its effect on the expression 2,3-cyclic nucleotide 3-phosphodiesterase(CNPase), a marker for oilgodendrocytes, The survival rates of 4 DIV cortical cells, that are dissociated from E18 rat cortex and maintained in the presence of TCDD, were 88.8, 83.6, 78.5, and 78.6%(5,10, 20 and 50 nM, respectively) where the reduction in 20 and 50mM TCDD were statistically very significant(p<0.01). Imunocytochemistry of cultured cells revealed that the intensities of immunostaining with an anti-CNP1&2 antibody depended on the concentrations of the toxin. Immunoblot analysis also showed differential expression of CNP1 and CNP2 in the presence of TCDD; the CNP1 expression was dose-dependently decreased. Interestingly, the expression of CNP2 in the presence if TDCC; the CNP1 expression was dose-dependently decreased. Interestingly, the expression of CNP2 fluctuated with the TCDD concentration. These results indicated that CNP1 and 2 are differentially regulated by TCDD, implying the functions of oligodendrocytes are modulated by the toxin.

  • PDF

Dlx3 Plays a Role as a Positive Regulator of Osteoclast Differentiation

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to playa role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM # 190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. Although the observed defects of TDO syndrome involves bone, little is known about the role of Dlx3 in bone remodeling process. In this study, we examined the effect of wild type DLX3 (wtDlx3) expression on osteoclast differentiation and compared it with that of 4-BP DEL DLX3 (TDO mtDlx3). To examine whether Dlx3 is expressed during RANKL-induced osteoclast differentiation, RAW264.7 cells were cultured in the presence of receptor activator of nuclear factor-B ligand (RANKL). Dlx3 protein level increased slightly after RANKL treatment for 1 day and peaked when the fusion of prefusion osteoclasts actively progressed. When wtDlx3 and TDO mtDlx3 were overexpressed in RAW264.7 cells, they enhanced RANKL-induced osteoclastogenesis and the expression of osteoclast differentiation marker genes such as calcitonin receptor, vitronectin receptor and cathepsin K. Since osteoclast differentiation is critically regulated by the balance between RANKL and osteoprotegerin (OPG), we examined the effect of Dlx3 overexpression on expression of RANKL and OPG in C2C12 cells in the presence of bone morphogenetic protein 2. Overexpression of wtDlx3 enhanced RANKL mRNA expression while slightly suppressed OPG expression. However, TDO mtDlx3 did not exert significant effects. This result suggests that inability of TDO mtDlx3 to regulate expression of RANKL and OPG may contribute to increased bone density in TDO syndrome patients. Taken together, it is suggested that Dlx3 playa role as a positive regulator of osteoclast differentiation via up-regulation of osteoclast differentiation-associated genes in osteoclasts, as well as via increasing the ratio of RANKL to OPG in osteoblastic cells.