• Title/Summary/Keyword: Well Efficiency

Search Result 6,031, Processing Time 0.03 seconds

Design of Heliostat Field for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템의 Heliostat Field 설계)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.41-51
    • /
    • 2012
  • Heliostat field is the most important subsystem in the tower type solar thermal power plant since its optical performance affects the total system efficiency most significantly while the construction cost of it is the major part of total construction cost in such a power plant. Thus a well designed heliostat field to maximize the optical efficiency as well as to minimize the land usage is very important. This work presents methodology, procedures and result of heliostat filed design for 200kW solar thermal power plant built recently in Daegu, Korea. A $2{\times}2(m)$ rectangular shaped receiver located at 43(m) high and tilted $28^{\circ}$ toward heliostat field, 450 of heliostats of which the reflective surface is formed by 4 of $1{\times}1(m)$ flat plate mirror facet, and the land area having about $140{\times}120(m)$ size are used to form the heliostat field. A procedure to deploy 450 heliostats in radial staggered nonblocking formation is developed. Also the procedures to compute the cosine effect, intercept ratio, blocking and shading ratio in the field are developed. Finally the heliostat filed is designed by finding the optimal radial distance and azimuthal spacing in radial staggered nonblocking formation such that the designed heliostat field optical efficiency could be maximized. The designed heliostat field has 77% of annual average optical efficiency, which is obtained by annually averaging the optical efficiencies computed between the time of where sun elevation angle becomes $10^{\circ}$ after sunrise and the time of where sun elevation angle becomes $10^{\circ}$ before sunset in each day.

A VPP Generator Design for a Low Voltage DRAM (저전압 DRAM용 VPP Generator 설계)

  • Kim, Tae-Hoon;Lee, Jae-Hyung;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.776-780
    • /
    • 2007
  • In this paper, the charge pump circuit of a VPP generator for a low voltage DRAM is newly proposed. The proposed charge pump is a 2-stage cross coupled charge pump circuit. The charge transfer efficiency is improved, and Distributed Clock Inverter is located in each charge pump stage to reduce clock period so that the pumping current is increased. In addition, the precharge circuit is located at Gate node of charge transfer transistor to solve the problem which is that the Gate node is maintained high voltage because the boosted charge can't discharge, so device reliability is decreased. The simulation result is that pumping current, pumping efficiency and power efficiency is improved. The layout of the proposed VPP generator is designed using $0.18{\mu}m$ Triple-Well process.

  • PDF

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

Adaptive Face Region Detection and Real-Time Face Identification Algorithm Based on Face Feature Evaluation Function (적응적 얼굴검출 및 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘)

  • 이응주;김정훈;김지홍
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.156-163
    • /
    • 2004
  • In this paper, we propose an adaptive face region detection and real-time face identification algorithm using face feature evaluation function. The proposed algorithm can detect exact face region adaptively by using skin color information for races as well as intensity and elliptical masking method. And also, it improves face recognition efficiency using geometrical face feature and geometric evaluation function between features. The proposed algorithm can be used for the development of biometric and security system areas. In the experiment, the superiority of the proposed method has been tested using real image, the proposed algorithm shows more improved recognition efficiency as well as face region detection efficiency than conventional method.

  • PDF

Removal of Odor and THM from the Raw Water of Daecheong Dam (대청호 원수내 냄새 및 THM 제거방안 연구)

  • Jeon, Hang-Bae;Yun, Gi-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.235-245
    • /
    • 1997
  • A pilot scale study for removing odor and trihalomethane formation potential (THMFP) was investigated in the standard water treatment plant equipped with ozone oxidation and granular activated carbon (GAC) adsorption processes. The removal efficiency of dissolved organic carbon (DOC) in the pilot scale standard water treatment process (PSWTP) was about 25%, however, no more removal in the ozone oxidation process. On a GAC after 30 days operation, DOC removal efficiency was about 75%. Odor removal efficiency was about 30% in PSWTP, 60% in ozone oxidation, and almost complete in well as DOC. Mid-1 and 2 that showed breakthrough in odor inducing material as well as DOC. Mid-1 and 2 chlorination was able to reduce trihalomethanes (THM) by 25% compared to prechloringation, while postchlorination alone could reduce them by 30%.

  • PDF

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

WSN Data Dissemination Protocol by N-hop Access Guarantee Backbone (N홉 접근보장의 백본을 이용한 무선 센서 네트워크 데이터 전송 프로토콜)

  • Kim, Moon-Seong;Cho, Sang-Hun;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Flooding and SPIN, which are well-known WSN(Wireless Sensor Network) proactive protocols, spontaneously disseminate the sensed data without a request from an arbitrary sink node. However, these methods disseminate the data even to some nodes that do not need it, which is energy inefficient. In this paper, we introduce a semi-proactive protocol to disseminate only to pertinent nodes instead of all nodes in order to overcome this weakness. Thus some nodes, such as arbitrary sink nodes that need the sensed data, could easily obtain the data within some hops. The simulation result shows that the proposed protocol has higher average node energy efficiency than that of well-known earlier work, SPIN. If a proactive protocol, such as SPIN, is changed to semi-proactive and has only a 1-hop burden, then the energy efficiency enhancement is up to about 83% compared with SPIN.

  • PDF

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

Study of Working Fluids on Thermodynamic Performance of Organic Rankine Cycle (ORC) (작동유체에 따른 유기랭킨사이클(ORC)의 열역학적 성능에 관한 연구)

  • Kim, Kyoung-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.223-231
    • /
    • 2011
  • The thermal efficiency of energy-to-power conversion becomes uneconomically low when the temperature of heat source drops below $370^{\circ}C$. ORC (Organic Rankine Cycle) has attracted much attention in last few years due to its potential in reducing consumption of fossil fuels and relaxing environmental problems, and its favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC using nine working fluids is comparatively assessed. Special attention is paid to the effect of system parameters such as turbine inlet temperature and pressure on the characteristics of the system such as volumetric flow rate and quality at turbine exit, latent heat, net work as well as thermal efficiency. Results show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as the thermal efficiency. Results also show that the system efficiencies become same irrespective of kind of working fluid when the temperature of heat source decreases to low range.

Performance Analysis of Coding According to the Interpolation filter in Inter layer Intra Prediction of H.264/SVC (H.264/SVC의 계층간 화면내 예측에서 보간법에 따른 부호화 성능 분석)

  • Gil, Dae-Nam;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.225-227
    • /
    • 2009
  • International standard specification, H.264/SVC improved from H.264/AVC, is set up so as to promote free use of huge multimedia data in various channel environments.;H.264/AVC is a international standard speicification for video compression, adopted and commercialized as standard for DMB broadcasting by JVT of ISO/IEC MPEG and ITU-T VCEG. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding. Among prediction technologies, 'inter-layer intra prediction' is to use co-located block of up sampled sublevels as a prediction signal. At this time, application of interpolation is one of the most important factors to determine encoding efficiency. SVC's currently using poly-phase FIR filter of 4-tap and 2-tap respectively to luma components. This paper is written for the purpose of analyzing encoding performance according to the interpolation. For this purpose, we applied poly-phase FIR filter of '2-tap', '4-tap' and '6-tap' respectively to luma components and then measured bit-rate, PNSR and running time of interpolation filter. We're expecting that the analysis results of this paper will be utilized for effective application of interpolation filter. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding.

  • PDF