• 제목/요약/키워드: Welding-working

검색결과 179건 처리시간 0.022초

분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석 (Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • 제15권1호
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

피로하중하 용접 잔류응력 완화의 정량적 평가 (Relaxation of Welding Residual Stresses under Fatigue Loads)

  • 한승호;강성보;신병천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.424-429
    • /
    • 2001
  • Residual stresses can be produced during manufacturing processes, eg. welding, machining and plastic working, and also in service. It can be superimposed with externally applied loads, so that unexpected deformations and failures of members will be occurred. Especially, the strength and the life of welded components are affected extensively by the residual stresses distributed around their weldments not only under static loads, but also fatigue loads. These residual stresses are not kept constant, but relaxed or redistributed during service. Under static loads the relaxation takes place when the residual stress superimposed with external stress exceeds locally the yield stress of material used. It is shown that under fatigue loads the residual stress is considerably relieved by the first or few cycle loading, and then gradually relaxed with increasing loading cycles. Although many investigations in this field have been carried out, the phenomenon and mechanism of the stress relaxation by mechanical means are still not clear, and there are few comprehensive models for predicting specific effects on the stress relaxation. In this study, the effects of applied static and fatigue loads on the residual stress relaxation were Investigated, and a model to predict quantitatively the residual stress relaxation was proposed.

  • PDF

컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구 (A study on development of plasma-arc cutting system with computer-numerical control)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • 제8권3호
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

단결정 초내열합금의 재결정 방지를 위한 접합 전처리 조건에 관한 연구 (A Study on the Optimum Bonding Preparation Condition of Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.191-199
    • /
    • 2001
  • The oxidation and recrystallization behaviors of Ni-base single crystal superalloy, CMSX-2 were investigated to determine the condition of the preparation for transient liquid phase (TLP) bonding operations. The faying surfaces of CMSX-2 were worked by the shot peening, fine cutting and mechanical polishing treatments and the degree of working of treated surfaces was evaluated by the hardness test and X-ray diffraction method CMSX-2 was heat-treated at 1,173∼1.589k for 3.6ks in vacuum of 4mPa. The mechanically polished surface was slightly oxidized after heat treatment even in the vacuum atmosphere of 4mPa. The thickness of an oxide film increased with increasing the heating temperature and the surface roughness of the faying surface. Recrystallization occurred at the surface after heat treatment at above 1,423K when the hardness was increased more than Hv600 by the shot peening treatment while the mechanically polished or fine cut surfaces didn't recrystallized. Based on these results, it was clearfied that the mechanically polishing with fine abrasive grit could be used for the preparation of faying surface of CMSX-2 before bonding operation.

  • PDF

수도용 대형 강관의 용접부 설계 개선에 관한 연구 (A study on improvement of weldment design for large steel water pipes)

  • 배강열;나석주
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.50-59
    • /
    • 1991
  • Large steel water pipes in Korea are joined prevalently by bell end method and welded at inside as well as outside of the pipes with the length of leg which is same as or larger than the thickness of pipes. This results in an excessive consumption of material and labor compared with foreign counturies such as USA, so that in our recent situation of requiring a number of water pipes such consumption is very ineffective and an improvement in weld design of water pipes is urgently necessary. In this experimental study, the possibility of reducing the length of leg to 85% of the pipe thickness was investigated through observations of microstructure and cross section of weldments, the tensile test, and the impact test of the field and laboratory specimens. As the results of this study, it was revealed that water pipes which have the leg of fillet about 0.8xthickness show a good weldability, have a greater strength than the base metal and absorb the enough energy to be safe in the working condition of the pipes.

  • PDF

50kg/mm$^{2}$급 고장력 강판의 선상가열에 따른 판상변형과 재질변화 (Distortion and transformation of high tensile strength steel plate of 50kg/mm$^{2}$grade due to line heating)

  • 정남호;최병길;박종은
    • Journal of Welding and Joining
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 1985
  • The line heating is a thermoplastic working technique which is used in bending work of steel plate and in correcting the distortion of welded structure. This method is considerably effective when the water-cooling is followed. In this study, an investigation was accomplished to find the effects on the change of material properties when the line heating was applied on the high tensile steel plate of 50kg/mm^2$ grade. Some steel plates were heated to various temperatures and then cooled with water or in the air. In this study, the author measured the angular distortion continuously during line heating to find out the relation between the bending efficiency and heating or water-cooling temperature. Furthermore, its material properties were examined by the V-notch Charpy impact test, the microscope observation and the Vickers hardness test. As results, the followings were clarified. (1) The amount of angular distortion increases as the heating temperature or the water-cooling temperature rises. (2) When the steel plate is heated between 700.deg. C and 900.deg. C, and then is water-cooled over 700.deg. C, some brittle structure is observed. But if the temperature of water-cooling is below 700.deg. C, no brittle one is found. (3) When the steel plate is heated over 800.deg. C and is cooled in the air, there is no unfavrable effect.

  • PDF

관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響) (Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630)

  • 오세규
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

스마트 조선소를 위한 사물인터넷 기반 용접 작업장 센서네트워크 구축 (Implementation of a Sensor Network in a Welding Workplace Based on IoT for Smart Shipyards)

  • 김현식;이기승;강석근
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.433-439
    • /
    • 2021
  • 본 논문에서는 사물인터넷을 이용하여 조선소의 작업장 단위로 센서네트워크를 구축하는 방안을 제시한다. 여기서는 조선소에서 가장 흔한 용접 작업장에서 조선블록을 통신매체로 활용하여 작업자의 위치, 용접 진행률, 작업 시간 등의 정보를 LoRa와 전력선통신을 이용하여 서버로 전송한다. 이와 같은 데이터통신을 위하여 유도성 커플러와 복합통신용 모뎀을 제작하여 와이어피더와 핀지그에 설치하여 센서네트워크를 구축하였다. 시험 결과, 제시된 시스템은 약 98% 이상의 데이터 전송 성공률과 작업자 위치 인식 성공률을 가지는 것으로 나타났다. 또한, 현장에서 발생된 작업 데이터는 실시간 기록과 디스플레이가 가능함을 공정관리시스템 플랫폼을 통하여 확인하였다. 제시된 시스템은 미래형 스마트 조선소 구축을 통한 우리나라 조선산업의 경쟁력 강화를 위한 단초가 될 것으로 사료된다.

Carbon monoxide poisoning-induced encephalopathy in a carbon dioxide arc welder: a case report

  • Seongwon Ma;Hoekyeong Seo;Dong Joon Park;Byeongju Choi;Shinhee Ye
    • Annals of Occupational and Environmental Medicine
    • /
    • 제34권
    • /
    • pp.19.1-19.9
    • /
    • 2022
  • Background: It is widely known that carbon dioxide (CO2) arc welding generates carbon monoxide (CO). However, to the best of our knowledge, no case reports have been published regarding CO poisoning in CO2 arc welders. Therefore, we aimed to report a case of CO poisoning-induced encephalopathy in a CO2 arc welder in the Republic of Korea to inform about the dangers of CO exposure among CO2arc welders. Case presentation: A 40-year-old man working as a CO2 arc welder for 15 years visited a local hospital with a tremor, involuntary urination, and speaking gibberish, on April 9, 2019. He stated that he had intermittent headache and forgetting symptoms for the last 5 years, and had been lost on the way to work several times. On April 9, 2019, he was diagnosed with CO poisoning-induced encephalopathy through brain magnetic resonance imaging. He received hyperbaric oxygen therapy, and some of his symptoms improved. According to the exposure assessment of his work environment, he was continuously exposed to high concentrations of CO for 15 years while operating CO2 arc welding machines. Conclusions: After evaluating the patient's work environment and evaluating his medical history, we concluded that his encephalopathy was caused by CO exposure during CO2 arc welding. Thus CO2 arc welders must be aware of the risk of CO poisoning and strive to avoid CO exposure.

Laser Welding Parameter Variations and its Application for Plastic Adhesion

  • Park, Sung-Jin;Park, Sung-Joon;Park, Hae-Young;Park, Jae-Wook;Sim, Ji-Young;Choi, Jin-Young;Kim, Hee-Je
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.112-117
    • /
    • 2007
  • a parametric investigation was conducted to evaluate the effect of the laser beam for plastic adhesion. To determine the best condition for plastic adhesion, the $CO_2$(wavelength $10.6{\mu}m$) and nd:yag(wavelength $10.6{\mu}m$) laser were experimented with. From the experiment results obtained, the nd:yag laser was revealed to be the most suitable for plastic adhesion. In this study, three adhesion parameters such as input power level, working time of laser beam and pps(pulse per second) were systematically adjusted for suitable adhesion. From these experiments, it was observed that the target plastic melted and was evaporated by the nd:yag laser. Furthermore, the relationships between adhesive surface by laser beam and above three parameters were discovered.