• Title/Summary/Keyword: Welding part

Search Result 569, Processing Time 0.021 seconds

A Study on the Improvement of Passenger Ship Rudder Stock and Tiller Locking Nut Loosening by Analyzing an Investigation Report and the NAS 3350 Test (조타장치 사고 재결서 분석과 NAS 3350 시험을 통한 카페리 여객선 타두재와 틸러 체결 너트 풀림 개선에 관한 연구)

  • Kang, Dae-Kon;Kim, Shin Hyo;Park, Jai-Hak
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.253-259
    • /
    • 2018
  • In February 2014, the rudder upper stock and the nut of a passenger ship were released and an accident occurred. That accident occurred because the steering gear of passenger ships that was intended to move many passengers. The accidents due to steering gear was zero according to 2010-2016 statistics. There is no rules prevent loosening of the upper rudder nut in "Ship Safety Act" and "Structural standard of steel ship". Since the accident, the Korea register has been revised to the joining method in Part 5 Chapter 7 of the rules in the classification of steel ships. In the field survey of 12 passenger ships operating on Mokpo and surrounding islands, the welding method was applied in the cases as the fastening method. The fastening type was equipped with two C-type structures. It was structured to be difficult to access. The NAS 3350 test was conducted to investigate ways to prevent homologous accident considering the characteristic of passenger ships that need to lift or unload rides once a year.

Fatigue Analysis for Levitation Rail of Urban Maglev System (도시형 자기부상열차 부상레일의 피로해석)

  • Kim, Kyung-Taek;Kim, Jae-Yong;Kim, Yong-Hwan;Park, Jin-Soo;Pyen, Sang-Yun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.39-45
    • /
    • 2008
  • A levitation rail is placed on the top of track structure to operate Maglev vehicles and a part of track that link up with a sleeper is applied repeated load in Maglev vehicles operation. This paper aimed to verify validity of design for levitation rail, through the fatigue analysis about load which is applied to levitation rail in Maglev vehicles operation and impact load occurring in an emergency landing. Load conditions applied design load(23kN/m) in normal operation and skid drop load(24kN/m) in vehicle drop. And boundary conditions are consider bolt fixing and welding. Through static analysis, weak point and maximum stress of levitation rail could be obtained. S-N(stress-life) method was used in oder to predict fatigue life, and Goodman relationship was applied to consider a effect of mean stress. Also damage was calculated by using Miner's. As a result of fatigue analysis, levitation rail had a fatigue life which was more than requirement ($10^6$cycle) in all analysis conditions. Assumption that $10^8{\sim}10^9$cycles is infinite life, all analysis conditions had infinite life except a case under drop load and bolt fixing($1.21{\times}10^6$).

  • PDF

A Study on the Repair of Fatigue Damage at Large Cast Iron structure using Cold Joint Method (냉간체결방법을 이용한 대형 주철 구조물의 피로손상수리방법에 대한 연구)

  • Lee, Sung-Riong;Lee, Dong Jun;Cho, Seok Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.140-148
    • /
    • 2019
  • Large cast iron structures are used in casings and pipes in shipsand chemical plants. Broken parts in the casings and pipescan result in failures even when stresses are below the yield strength of the part's materials. Fatigue failure of a large cast iron structure is inevitable due to the design constraints and low reliability of the material strength. A small structure can be repaired by welding, but a large structure cannot because it cannot be preheated slowly and uniformly. This study shows that a large structure can be repaired by a cold joint method using a crack repair screw. Large cast iron structures were manufactured by GC 300, and their design stress is below 3.5 MPa. The tensile strength on notched specimens repaired by crack repair screws was 8.2 MPa. Therefore, the safety factors of structures repaired by crack repair screws have a value above 2.3 and are considered to be high values.

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Structural Analysis and Design of B-pillar Reinforcement using Composite Materials (복합소재를 활용한 B필러 강화재의 구조해석 및 설계)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Kim, Ji Wook;Yang, Min Seok;Gu, Yoon Sik;Ahn, Tae Min;Kwon, Sun Deok;Lee, Jae Wook
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • This paper aims to reduce weight by replacing the reinforcements of the B-pillar used in vehicles with CFRP(Carbon Fiber Reinforced Plastics) and GFRP(Glass Fiber Reinforced Plastics) from the existing steel materials. For this, it is necessary to secure structural stability that can replace the existing B-pillar while reducing the weight. Existing B-pillar are composed of steel reinforcements of various shapes, including a steel outer. Among these steel reinforcements, two steel reinforcements are to be replaced with composite materials. Each steel reinforcement is manufactured separately and bonded to the B-pillar outer by welding. However, the composite reinforcements presented in this paper are manufactured at once through compression and injection processes using patch-type CFRP and rib-structured GFRP. CFRP is attached to the high-strength part of the B-pillar to resist side loads, and the GFRP ribs are designed to resist torsion and side loads through a topology optimization technique. Through structural analysis, the designed composite B-pillar was compared with the existing B-pillar, and the weight reduction ratio was calculated.

Evaluation of Steel Tube Connection in Precast Concrete Double Wall System (프리캐스트 콘크리트 더블월 시스템의 각형 강관 연결부 성능평가 )

  • Yujae Seo;Hyunjin Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2023
  • In this study, a double wall system is introduced, which was invented to simplify the complicated manufacturing process of the existing precast concrete (PC) double wall systems and to remove defects such as laitance that may occur during the production of concrete panels. An experimental study was conducted to investigate the tensile resisting capacity of the steel tube which is embedded in the precast concrete panel to keep the spacing between PC panels and to prevent damage of the PC panels during transportation and casting concrete onsite. The experiment was planned to determine the detail of effective steel tube connection considering the steel plate treatment method according to the formation of the opening, the presence of embedded concrete, and the reinforcement welding for additional dowel action as key variables. As a result, the ultimate tensile strength increased by 20-30% compared to the control specimen (ST) except for the steel tube specimen (ST_CP) which has steel plates bent inward at the end part of the steel tube. Since the specimen (ST_CON) filled with concrete inside the control specimen has no additional process and cost for the steel tube connections compared to the control specimen during the production of the developed double wall system, it is determined to be the appropriate detail of steel tube connection.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.