• Title/Summary/Keyword: Welding parameters

Search Result 784, Processing Time 0.022 seconds

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Study of the Constant Current Fuzzy Control System Design using CRS Algorithm during Inverter DC Resistance Spot Welding Process (인버터 DC 저항점용접 공정에서 CRS 알고리즘을 이용한 정전류 퍼지 제어시스템 설계에 관한 연구)

  • Park, Hyoung-Jin;Park, Pyeong-Won;Yu, Ji-Young;Kim, Dong-Cheol;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • The purpose of this study is to propose a method to decide near-optimal settings of the constant current fuzzy control parameters using a controlled random search. This method tries to find the near-optimal settings of the constant current fuzzy control parameters through experiments. It has an advantage of being able to carry out searches in the search domain which includes some irregular points. The method suggested in this study was used to determine the fuzzy control parameters by which the desired welding current were formed during inverter DC resistance spot welding. The output variable was the ITAE (integral of time multiplied by the absolute error). This output variable was determined according to the input variables, which are the GE, GDE, and GDU. This study described how to obtained near-optimal welding current condition over a wide search space conducting a relatively small number of experiments.

Effects of Welding Parameters on Porosity Formation in Weld Beads of Galvanized Steel Pipes produced with Gas Metal Arc Welding (아연도금강관의 가스메탈아크용접에서 용접인자가 기공형성에 미치는 영향)

  • Lim, Young-Min;Jang, Bok-Su;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.46-50
    • /
    • 2012
  • This study was carried out to investigate the effect of welding parameters such as shielding gas compositions welding voltage and welding current on the pore formation in the weld beads of galvanized steel pipes produced with gas metal arc welding. The porosity was evaluated and rated by metallography and radiographic test in terms of weight percentage, number and distribution of pores in weld beads. The porosity increased with increasing welding voltage and current, in which Ar gas produced the most porosity while $Ar+5%O_2$ generated the least porosity. It was found that the porosity could be reduced by selection of the proper gas mixture composition such as $Ar+5%O_2$ and $Ar+10%CO_2$ and by using current (130~150A) and voltage(16~20V).

Friction Welding of Inconel 713C and SCM 440 (Inconel 713C와 SCM 440의 마찰용접)

  • 조현수;서성재
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.78-84
    • /
    • 1997
  • Friction welding technique was studied to weld the turbine wheel and shaft of a turbocharger. The welding parameters were selected to investigate the effects of variables on welding quality of Inconel 713C and SCM 440. Experimental results showed that the turbine wheel and shaft could be successfully welded by friction welding. The heat affected zone was identified to be 2 mm from the weld seam. After welding, the hardness profile was found to have sudden increase and decrease for inconel 713C and SCM 440 respectively. Tensile strength of welded specimens was higher than the required strength for all of the studied welding parameters. The central portion of fracture surfaces by bending had no defects such as crack.

  • PDF

Analysis of the Fume Generation Rates in the Flux Cored Arc welding

  • Chae, H.B.;Kim, J.H.;Yang, S.C.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • The characteristics of the fume generation in a flux cored arc welding were investigated using the fume collection chamber developed. The Korean Standard concerning the method for the evaluation of the fume generation rate(FGR) was updated by the evaluation method obtained through this study. It was found that the effect of humidity in the test environment should be considered and the automatic welding method had to be employed for the purpose of the exact evaluation of the fume generation rate. The results showed that the fume generation rate was influenced by the welding parameters. The important factors were the welding current arc voltage, travel speed, and contact tip to work distance(CTWD) that affected the heat input as well as the torch angle and the shielding gas flow rate that influenced the shielding effect. The fume generation rate increased as the heat input increased and the shielding effect decreased. It was also observed that the effect of the welding current is much grater than the other welding parameters.

  • PDF

The Effect of Process Parameters on Sealing Quality for Ir-192 Radiation Source Capsule using Resistance Spot Welding (Ir-192 방사선원의 밀봉 용접부 품질에 미치는 저항용접 공정변수의 영향)

  • Han, In-Su;Son, Kwang-Jae;Lee, Young-Ho;Lee, You-Hwang;Lee, Jun-Sig;Jang, Kyung-Duk;Park, Ul-Jae;Park, Chun-Deuk
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • Ir-192 radiation sealed sources are widely employed to the therapeutic applications as well as the non-destructive testing. Production of Ir-192 sources requires a delicate but robust welding technique because it is employed in a high radioactive working environment. A GTA(Gas Tungsten Arc) welding technique is currently well established for this purpose. However, this welding method requires a frequent replacement of the electrode, which results in the delay of the production to take a preparatory action such as to isolate the radiation sources from the working place before getting access to the welding machine. Hence, a resistance welding technique is considered as an alternative method of the GTA welding technique. The advantages of resistance welding are high welding speed and high-rate production. Also it has very long life of electrode comparing to GTA welding. In this study, the resistance welding system and proper welding conditions were established for sealing Ir-192 source capsule. As a results of various experiments, it showed that electrode displacement can be employed as a indicator to predict welding quality. We proposed two mathematical models(linear and curvilinear) to estimate electrode displacement with process parameters such as applied force, welding current and welding time by using regression analysis method. Predicting results of both linear and curvilinear model were relatively good agreement with experiment.

Prediction of Upset Length and Upset Time in Inertia Friction Welding Process Using Deep Neural Network (관성 마찰용접 공정에서 심층 신경망을 이용한 업셋 길이와 업셋 시간의 예측)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.47-56
    • /
    • 2019
  • A deep neural network (DNN) model was proposed to predict the upset in the inertia friction welding process using a database comprising results from a series of FEM analyses. For the database, the upset length, upset beginning time, and upset completion time were extracted from the results of the FEM analyses obtained with various of axial pressure and initial rotational speed. A total of 35 training sets were constructed to train the proposed DNN with 4 hidden layers and 512 neurons in each layer, which can relate the input parameters to the welding results. The mean of the summation of squared error between the predicted results and the true results can be constrained to within 1.0e-4 after the training. Further, the network model was tested with another 10 sets of welding input parameters and results for comparison with FEM. The test showed that the relative error of DNN was within 2.8% for the prediction of upset. The results of DNN application revealed that the model could effectively provide welding results with respect to the exactness and cost for each combination of the welding input parameters.

Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding ($CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석)

  • Seo J.H.;Kim I.S.;Kim I.J.;Son J.S.;Kim H.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

Dissimilar Metal Welding of SM45C and STS304 by means of CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 SM45C와 STS304의 이종금속용접)

  • 신호준;유영태;임기건;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1369-1375
    • /
    • 2004
  • For many years and primarily for economical reasons, Dissimilar Metal Welds have been used as transition joints in a variety of equipment and applications. But Dissimilar Metal Welds have several fabrication and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Laser welding techniques have been characterised for various materials. In this paper, the laser weldability of STS304 stainless steel and SM45C at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested

  • PDF