• Title/Summary/Keyword: Welding notch factor

Search Result 16, Processing Time 0.02 seconds

Effect of Restraint Stress on the Precipitation Behavior and Thermal Fatigue Properties of Simulated Weld Heat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강 재현 용접 열 영향부의 석출거동 및 열피로 특성에 미치는 구속응력의 영향)

  • Han, Kyutae;Kang, Yongjoon;Lee, Sangchul;Hong, Seunggab;Jeong, Hongchul;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • Thermal fatigue life of the automobile exhaust manifold is directly affected by the restraint force according to the structure of exhaust system and bead shape of the welded joints. In the present study, the microstructural changes and precipitation behavior during thermal fatigue cycle of the 18wt% Cr ferritic stainless steel weld heat affected zone (HAZ) considering restraint stress were investigated. The simulation of weld HAZ and thermal fatigue test were carried out using a metal thermal cycle simulator under complete constraint force in the static jig. The change of the restraint stress on the weld HAZ was simulated by changing the shape of notch in the specimen considering the stress concentration factor. Thermal fatigue properties of the weld HAZ were deteriorated during cyclic heating and cooling in the temperature range of $200^{\circ}C$ to $900^{\circ}C$ due to the decrease of Nb content in solid solution and coarsening of MX type precipitates, laves phase, $M_6C$ with coarsening of grain and softening of the matrix. As the restraint stress on the specimen increased, the thermal fatigue life was decreased by dynamic precipitation and rapid coarsening of the precipitates.

An Experimental Study on Fatigue Crack Growth Characteristics of Welded High-Strength Steels (용접구조용 고강도강재의 피로균열성장특성에 관한 실험적 연구)

  • Hong, Sung Wook;Kyung, Kab Soo;Nam, Wang Hyun;Jung, Young Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.773-782
    • /
    • 2002
  • In this study, a series of fatigue tests are performed in order to estimate quantitatively the characteristics of fatigue crack growth rate according to the base metal, heat affected zone(HAZ) and weld metal, and the welding method and grade of strength of object steels, and the influence on fatigue crack growth rate according to the direction of welded line for high strength steels of SM570, POSTEN60, and POSTEN80 steels. From the fatigue test results, the retardations of fatigue crack growth rate are remarkable in case that the direction of notch is parallel to welded line than in case that the direction of notch is perpendicular to welded line because of compresive residual stress in weld metal & HAZ. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range. Meanwhile, fatigue safety is guaranteed sufficiently in the object steels because the fatigue crack growth rate in the range of fatigue crack propagation has a similar tendency to the test results & existing results.

A Study on the Fatigue Strength Reduction Factor under the High Cycle Bending Fatigue (고사이클 굽힘 피로에서의 피로강도 감소계수에 관한 연구)

  • Pyo, Dong-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 1992
  • 기구나 구조물의 피로수명은 노치에서의 피로균열 방생수명에 의하여 지배되기때문에 노치로 인한 피로강도감소계수 $K_f$는 피로설계상 대단히 중요한 인자이다. 노치 선단(Notch root)에서의 피로균열발생명수 N$_c$를 기준으로하면 탄성응력집중계수 $K_t$가 10 정도까지 $K_f$$K_t$간에는 거의 직선적인 관계가 있음이 이다- 고에 의하여 명석해졌으나 이는 인장,압축의 축력이 작용하였을 때이며 따라서 기구나 구조부재는 축력외에도 굽힘 피로 하중이 작용하였을때도 많으므로 본 연구에서는 굽힘 피로 하중을 받았을때도 있다. -고의 결론이 적용되는지는 검시코져 본 연구를 실시하였다.

  • PDF

A study on the characteristics of corrosion-fatigue-crack propagation in the welded parts of high tensile steels under sea water (고장력강 용접부의 해수중 부식피로균열 성장특성에 관한 연구)

  • 김영식;박무창
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 1987
  • Ships and offshore strrctures are exposed to the corrosive surroundings, and the extablishment of the design criteria and the elucidation on the influence by this environment are requested to maintain the safety and to demonstrate the function of the structure. In this paper, the fatigue-crack-growth behavior on the compact tension specimens of quenched, tempered HT80 grade steels and RA36 high tensile steels having a single edge fatigue cracked notch respectively, were investigated under the repeated tensile stress with constant stroke in sea water for the welded parts by shielded metal arc welding. Main results obtained are summerized as follows; 1. The fatigue-crack-growth rates da/dN in sea water appeared to be greater behavior than those in air environment at the same stress intensisy factor range $\DeltaK$. 2. The correlation data of da/dN$\DeltaK$ of the two kinds of high tensile steels in sea water showed no great difference, however, the correlation data of da/dN$\DeltaK/\sigma_y$($\sigma_y$ stands for yield strength of the material) showed that the fatigue-crack-growth behavior of RA36 plate is affected by active path corrosion(APC) mechanism, while that of HT80 grade plate is mainly affected by hydrogen embrittlement mechanism.

  • PDF

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

Study on tension-tension fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate (수중용접한 국산 SM41A-2강판의 편진반복 인장하중하의 피로강도특성에 관한 연구)

  • 오세규;박주성;한상덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 1987
  • Nowadays, the high development of industrial technique demands the optimal design of marine structures to be welded under the water, because the underwater welding of the ship hull and marine structures can decrease manpower and cost of production. However there is not available at present any report on fatigue behavior about underwater welded joints. In this paper under tention- tension repeated fatigue stress with frequency of 10 cycles per second by local controlled system, the fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate of 10 mm thickness were experimentally examined. The results obtained were as follows : 1) The fatigue strength of underwater welded joints of SM41A-2 was peaked at the heat input of about 1, 400 joule/mm(180 A, 36 V), while, at the heat input of more than about 1, 100 joule/mm (160 A, 33 V) that of the underwater welds at the higher than cycle of life rather than the lower cycle was higher than that of the base metal but lower than that of the atmosphere welds on account of both cooling and notch effects. 2) The fatigue limit of underwater welds increased with an increase of heat input resulting in a peak of that at the heat input of about 1, 400 joule/mm and then decreased gradually. 3) The fatigue strength at N cycles was peaked between the heat input of about 1, 400 and 1, 700 joule/mm where the strain was rapidly increased. 4) It was confirmed that the optimal zone of heat input condition for obtaining the underwater welds fatigue strength higher than that of the base metal exists, and if out of this zone, the fatigue strength of the underwater welds was lower than that of the base metal because of lack weld penetration, inclusion of slag, voids, etc. 5) By the fatigue test, the underwater welds fractured brittly without visual deformation, so the strain was remarkably less than of the atmosphere welds. 6) The fatigue life factor was peaked at the heat input of about 1, 600 joule/mm (200 A, 36 V) at which the mean strain is a little higher than that of the base metal but quite lower than those of the atmosphere welds, resulting in good underwater welds because both fatigue strength and ductility of the underwater welds are higher than those of the base metal at such heat input.

  • PDF