• 제목/요약/키워드: Welding element

검색결과 790건 처리시간 0.02초

이음방식 및 틈의 위치에 따른 메탈터치 이음부의 거동에 관한 연구 (A Study on the Behavior of Metal Touch Connection subject to Connection Types)

  • 홍갑표;김석구
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.661-669
    • /
    • 2004
  • 철골구조에 있어서 기둥 이음부의 설계는 단순히 적당한 틈에 용접이나 볼트에 의한 이음으로 해석 및 설계가 이루어지고 있는 것이 보편적인 현실이다. 이때 이음부에서 메탈터치에 의하여 상부의 응력을 하부로 전달하는 정도를 규정하는 기준은 각 나라마다 다르다. 미국은 설계자의 판단에 따라 모두 전달 가능하다는 규정아래 설계가 이루어지고 있으며, 우리나라와 일본의 경우는 25%까지 전달 가능하다는 규준에 의해 설계가 이루어지고 있어 그 차이가 너무 크다. 따라서 본 연구에서는 메탈터치에 의한 이음의 응력체계를 규명하여 이음의 합리성을 증진시키고, 이음의 경제성 및 시공성을 위해 틈의 위치 및 이음방법을 매개변수로 하여 메탈터치 실험을 실시하여 미국 및 일본 규준과 비교하였다. 또한 메탈터치 이음부의 거동을 실험적인 방법과 해석적인 방법을 통하여 분석하여 메탈터치 이음부의 설계에 필요한 기초 자료를 제공하고자 한다.

유한요소법을 이용한 용접열영향부의 균열진전 및 샤르피 흡수에너지 연구 (Study of Crack Propagation and Absorbed Energy in Heat Affected Zone Using a Finite Element Method)

  • 장윤찬;이영석
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.541-548
    • /
    • 2009
  • 본 논문은 샤르피 충격실험과 유한요소법를 이용하여 노치위치에 따른 파괴거동과 흡수에너지의 영향을 평가하였다. 본 연구자는 쉴드메탈아크 용접방법으로 두께가 25mm인 압력용기용강(SA-516 Gr. 70)을 용접하였고, 이 용접된 평판으로 샤르피 시편을 제작하였다. 샤르피 충격실험에서는 용접열영향부(HAZ)에서 노치위치가 다른 시편이 사용되었다. 그리고 본 연구자는 유한요소법을 이용하여 샤르피 충격실험에서의 균열진전을 모사하였다. 용접열영향부(HAZ)의 기계적 물성을 유한요소해석에 적용하기 위해 HAZ를 2개 영역, 3개 영역 그리고 4개 영역으로 나누었다. 본 연구결과에서는 샤르피 충격실험의 흡수에너지가 노치위치에 의존적이라는 것을 보여주었다. 또한 샤르피 용접시편에서 신뢰성 있는 유한요소해석 결과를 얻기 위해서는 용접열영향부를 적어도 3개 이상의 영역으로 나누어야 한다는 결과를 얻었다.

SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도 (Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method)

  • 이만석;김택영;강세형;김호경
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

LPG용기의 강도 안전성에 관한 유한요소해석 (FEM Analysis on the Strength Safety of a LPG Cylinder)

  • 김청균;정남인
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.55-59
    • /
    • 2007
  • 본 논문은 평판강재를 소성적으로 가공하고, 이것을 용접으로 연결하여 제작한 LPG 용기에 대한 강도 안전성을 고찰하고자 한다. 용기의 강도 안전성은 유한요소해석법을 사용하여 LPG 용기 구조물에서 발생되는 응력분포를 해석함으로써 안전성에 대한 결과를 얻을 수 있다. FEM 해석결과에 의하면, 내압시험을 위한 가스압력 $31kg/cm^2$은 LPG 용기의 상부경판의 프레스 가공 부근에서 국부적인 집중응력이 발생하고, 여기서 발생된 최대응력은 용기 소재의 항복강도를 넘어서는 것으로 나타났다. 따라서 현재의 내압시험 검사방법은 압력용기의 피로손상을 증가시키고 수명을 단축하는 원인으로 작용할 수 있다는 결과를 보여주기 때문에 재검토되어야 하고, 빠른 시일에 개정되어야 할 것이다. 반면에 충전압력 $9kg/cm^2$와 기밀시험 압력 $18.6kg/cm^2$에 의한 용기의 충전과 검사기준에 대한 해석은 LPG 강재용기의 안전성이 비교적 높다는 결과를 제시하고 있다.

  • PDF

Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint

  • Guo, Qi;Xing, Ying;Lei, Honggang;Jiao, Jingfeng;Chen, Qingwei
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.75-86
    • /
    • 2020
  • The grid structures with welded hollow spherical joint (WHSJ) have gained increasing popularity for use in industrial buildings with suspended cranes, and usually welded with steel tube (ST). The fatigue performance of steel tube-welded hollow spherical joint (ST-WHSJ) is however not yet well characterized, and there is little research on fatigue life prediction methods of ST-WHSJ. In this study, based on previous fatigue tests, three series of specimen fatigue data with different design parameters and stress ratios were compared, and two fatigue failure modes were revealed: failure at the weld toe of the ST and the WHSJ respectively. Then, S-N curves of nominal stress were uniformed. Furthermore, a finite element model (FEM) was validated by static test, and was introduced to assess fatigue behavior with the hot spot stress method (HSSM) and the effective notch stress method (ENSM). Both methods could provide conservative predictions, and these two methods had similar results. However, ENSM, especially when using von Mises stress, had a better fit for the series with a non- positive stress ratio. After including the welding residual stress and mean stress, analyses with the local stress method (LSM) and the critical distance method (CDM, including point method and line method) were carried out. It could be seen that the point method of CDM led to more accurate predictions than LSM, and was recommended for series with positive stress ratios.

투습방수 직물을 사용한 기능성 아우터의 특성 분석 - 소재, 세탁·취급, 디자인, 패턴, 부자재, 봉제를 중심으로 - (Analysis of Characteristics of Functional Outers with Moisture-permeable Waterproof Fabric - Focus on Fabrics, Washing·Cares, Design, Patterns, Subsidiary Materials, and Sewing -)

  • 노의경;윤미경
    • 한국의류산업학회지
    • /
    • 제23권1호
    • /
    • pp.129-141
    • /
    • 2021
  • This study investigated fabrics, washing and cares, design, pattern, subsidiary materials, and sewing methods with a focus on the functional outers using moisture-permeable waterproof fabric as a shell; in addition, each element was analyzed for differences depending on fabric type. The characteristics of 34 outers were investigated through labels, online product introductions, visual inspection, observations from two experts with more than 30 years experience and wear tests. Moisture-permeable waterproof fabrics used for the outer were classified into two types; in addition, the shell of the high-density fabric and the 2 & 3-layer fabrics had different characteristics. Various fabrics, detailed designs, and three-dimensional patterns suitable for each part of the human body were used to improve functionality. In addition, various subsidiary materials and sewing methods were used to form an organic relationship. The same washing and cares, patterns and subsidiary materials were used regardless of fabric type; however, the fabric type influenced the detailed design and sewing. The outers with high-density fabric had a loose fit, short placket, e-banded cuffs, lock-stitch, and lock-stitch+binding. However, the outer with 2 & 3 layer fabric had a slim fit, hood width adjustment, zippered pockets, cuffs with tab, seamless adhesive sewing such as laminating, lock-stitch+ seam-sealing, and welding.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구 (Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy)

  • 서위걸;;이희남;양동주;박순균;최시훈
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

SM 45C강의 레이저 표면경화처리에 관한 연구 (A study on the laser surface hardening of SM 45C steel)

  • 나석주;김성도;이건이;김태균
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.53-62
    • /
    • 1987
  • 본 논문에서는 1 KW CW CO$_{2}$레이저 발생자장치를 사용하여 표면경화 처리 를 행할때 공정과 관련된 변수들이 용접부 및 표면경화층에 미치는 영향들을 이론과 실험을 통해서 규명하고, 이 결과들을 실제공정에 사용할 수 있는 기초자료로서 제시 하고자 한다. 이를 위해서 해석에 사용될 수 있는 유한요소법(Finite Element Meth- od)에 근거한 2차원 열유동 해석용 프로그램 및 데이타 처리 프로그램을 개발하고, 중 탄소강에 레이저 표면처리를 수행하여 실험 및 이론해석의 결과를 비교 검토하였다. 비교 검토하여 그 설정기준을 고찰하였다.