• Title/Summary/Keyword: Welding cost

Search Result 329, Processing Time 0.025 seconds

Reliability Assessment and Accelerated Life Prediction of Gas Welded Joint in the Rail Road Car Body (1. Plug and Ring Type) (철도차량 차체 가스용접 이음재의 가속수명예측과 신뢰도 평가)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of a railroad car and vehicles structure.However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weld, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, $({\Delta}{\sigma}_a)_R-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test(ALT) was conducted. From the experimental results, an acceleration model was derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Studies on the Improvement of Butt Welding Characteristic of Polyethylene Pipes using an Advanced Heat Plate (PE 이중벽관 융착시 열판 형상에 따른 PE 파이프의 용접성에 관한 연구)

  • Gang, Chang-Gu;Kim, Jae-Seong;An, Dae-Hwan;Lee, Gyeong-Cheol;Hwang, Ung-Gi;Lee, Bo-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.276-278
    • /
    • 2007
  • Many processes have been introduced to join PE pipes, but most of these methods have lots of disadvantages such as costs and lack of reliability, etc. Recently due to the benefits of cost, safety and reliability, the but welding has been paid much attention to join PE pipes. In case of butt welding, the heat plate which is used to melt PE pipes is the most critical equipment. In this study, after designed secondary developed heat plate of new shape, the PE double wall pipes were but-welding by using the developed heat plate and secondary developed heat plate and comparison of weld-zones and tensile test were performed. As results of tensile test, tensile strengths using secondary developed heat plate were measured higher $1.17{\sim}1.5$ than using developed heat plate.

  • PDF

Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint (십자형 필릿 용접부에서의 피로파괴 형상과 특성)

  • Lee, Yong-Bok;Chung, Joon-Ki;Park, Sang-Heup
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

The Comparison Analysis of Welding Techniques in Water Distribution Steel Pipes (상수도강관 용접접합의 방법별 비교분석)

  • Kim, Eung-Seok;Jeong, Won-Sik;Kim, Sung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2859-2865
    • /
    • 2011
  • The welded connection is known as an essential factor for establishing qualified construction and/or maintenance of wrapped steel pipe. In this study, welded connection conditions in the coated pipes with large diameter (over 700 mm) in Korea water distribution systems were estimated for suggesting technically and economically available welded connection method. For the study analysis, current steel pipe usage and accident cases were investigated. In addition, the characteristics of each welded connection method and automatic or manual connection techniques were also compared and estimated. As results, automatic welded connection method is superior than manual welded connection method in aspect of pure construction cost (average 9%) or pure welded connection cost (average 13.5%). When the poor welding-working situations in Korea are considered such as high tolerance of out-of-roundness in KS regulation, a number of lap joint welded connections, the real cost benefits of automatic welded connection should be much higher than those of manual welded connections.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

A Study on Development of One-Piece Manufacturing Process for Automotive Cowl Cross Bar (자동차용 카울크로스바의 일체화 성형 공정 개발에 관한 연구)

  • Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.275-281
    • /
    • 2017
  • The automobile cowl cross bar which is a backbone frame part inside the cockpit module has been designed with more complex geometries recently due to demands of its enhanced functions and reduced weight of car. The traditional manufacturing process using welding between tubes with different diameters shows several problems such as poor mechanical characteristics and appearance, etc. Therefore, in this study, manufacturing processes which can eliminate the welding process were developed by applying one-piece metal forming processes such as tube drawing and radial swaging. As results, it was found that the one-piece manufacturing processes give better bending strength than the traditional welding process and the swaging process shows the lowest manufacturing cost.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Strength Estimation Model of Resistance Spot Welding in 780MPa Steel Sheet Using Simulation for High Efficiency Car Bodies (시뮬레이션을 이용한 고효율 차체용 780MPa급 강판의 저항 점 용접 강도 예측 모델 개발)

  • Son, Chang-Seok;Park, Young-Whan
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.70-77
    • /
    • 2015
  • Nowadays, car manufacturers applied many high strength steels such AHSS or UHSS to car bodies for weight lightening. Therefore, a variety of applied steel sheet to car bodies increased and the needs of simulation to evaluate weldability also increased in order to reduce the cost and time. In this study, resistance spot welding simulations for DP 780 Steel with 1.0 and 1.4 mm thickness were conducted with respect to lobe curve. 2 regression models to estimate tensile shear strength were suggested and they were second order polynomial regression model and optimized second order regression model. The performance of these models was evaluated in terms of the coefficient of determinant and average error rate.

Joining of Thermoplastics by the Ultrasonic Welding (초음파용접에 의한 열가소성 수지의 접합)

  • Park, Joon-Boo;Lee, Chul-Ku
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.118-125
    • /
    • 1992
  • Joining of thermoplastics is an area of growing importance in the automotive, aerospace, electronics medical and other domestic appliance industries. While adhesive Bonding or mechanical fastening could be used to join thermoplastics, welding is very effective because of its speed and low cost. This study investgated the ultrasonic joining of thermoplastics. Four kinds of thermoplastics such as Acrylonitrile Butadiene Styrene, Polystyrene, Polyethylene and Polypropylene were used, ultilizing all possible joining combinations. In each combination of thermoplastics, the weldability of the joint was evaluated as a function of weld time, amplitude of vibration and pressure. It was generally found that joining of amorphous thermoplastics with semicrystalline thermopastics resulted in poor joints due to its different crystalline structure. Joining of the amorphous thermoplastics together and joining of the semicrystalline thermoplastics together produced the best joints owing to its same crystalline structure.

  • PDF