• 제목/요약/키워드: Welding bead

검색결과 583건 처리시간 0.024초

원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구 (A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

The Geometry Prediction of Back-bead in Arc Welding

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.84-89
    • /
    • 2007
  • This research was done on the basis of assumption that there is a relationship between welding parameters and geometry of the back-bead being a gap in arc welding. Multiple regression analysis was used as method for predicting the geometry of the back-bead. The analysis data and the verification data were used for the formation of multiple regression analysis. The method was used to perform the prediction of the back-bead.

GMA 용접공정의 비드형상 추론기술 (The Inference System of Bead Geometry in GMAW)

  • 김면희;최영근;신현승;이문환;이태영;이상협
    • 한국산업융합학회 논문집
    • /
    • 제5권2호
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

등온선 반경을 이용한 공정변수 모니터링에 관한 연구 (A Study on Monitoring for Process Parameters Using Isotherm Radii)

  • 김일수;전광석;손준식;서주환;김학형;심지연
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구 (Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

GMA 용접에 최적의 용접비드 형상을 예측하기 위한 수학적 모델 개발 (A DEVELOPMENT OF MATHEMATICAL MODELS FOR PREDICTION OF OPTIMAL WELD BEAD GEOMETRY FOR GMA WELDING)

  • 김일수
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.118-127
    • /
    • 1997
  • With the trend towards welding automation and robotization, mathematical models for studying the influence of various variables on the weld bead geometry in gas metal arc (GMA) welding process are required. Partial penetration, single-pass bead-on-plate welds using the GMA welding process were fabricated in 12mm mild steel plates employed four different process variables. Experimental results has been designed to investigate the analytical and empirical formulae, and develop mathematical equations for understanding the relationship between process variables and weld bead geometry. The relationships can be usefully employed not only for open loop process control, but also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

신경회로망을 이용한 고주파 전기 저항 용접 파이프의 비드 형상 분류 (A Bead Shape Classification Method using Neural Network in High Frequency Electric Resistance Welding)

  • Ko, K.W.;Kim, J.H.;Kong, W.I.
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.86-94
    • /
    • 1995
  • Bead shape in high frequency electric resistance (HER) pipe welding gives useful information on judging current welding conditon. In most welding process, heat input is controlled by skilled operators observing color and shape of bead. In this paper, a visual monitoring system is designed to observe bead shape in HERW pipe welding process by using structured light beam and a C.I.D(Charge injection device) camera. To avoid some difficul- ties arising in extracting stable features of stripe pattern and classifying the extracted features, Kohonen neural network is used to classify such bead shapes. The experimental results show accurate classification performance of the proposed method.

  • PDF

가접부를 고려한 필릿 용접조건의 선정에 관한 연구 (A Study on the Selection of Fillet Weld Conditions by Considering the Tack Welds)

  • 이준영;김재웅;김철희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.304-306
    • /
    • 2006
  • Positioning the workpiece accurately and preventing the weld distortion, tack welding is often performed before main welding in the construction of welded structures. The weld bead size of the tack weld is determined according to the workpiece thickness, weld length, weld joint type etc. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually adopted for the uniform weld bead profile. In this study, an experimental method for the selection of optimal welding condition was proposed in the fillet weld which was done over the tack weld. This method uses the response surface analysis in which the leg length and the reinforcement height of weld bead were chosen as the quality variables of weld bead profile. The overall desirability function, which was combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. From the result, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

  • PDF

A Study on Real-time Control of Bead Height and Joint Tracking Using Laser Vision Sensor

  • Kim, H. K.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.30-37
    • /
    • 2004
  • There have been continuous efforts on automating welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, a vision system is constructed and using this, the 3 dimensional geometry of the bead is measured on-line. For the application as in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

  • PDF