• 제목/요약/키워드: Welding Zone(WZ)

검색결과 5건 처리시간 0.018초

복합조직강의 마찰용접부에 대한 동적파괴특성 (The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

레이저 용접 테일러드 블랭크의 용접부 물성평가 및 박판성형 해석에 적용 (Evaluation of Material Properties of Welding Zone in Laser Welded Blank and Its Application to Sheet Metal Forming Analysis)

  • 구본영;금영탁
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 1999년도 춘계학술발표대회 논문개요집
    • /
    • pp.29-32
    • /
    • 1999
  • The material properties of laser welding zone such as strength coefficient, work-hardening exponent, and plastic anisotropic ratio are analytically obtained from those of base metals based on the tensile tests. . The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welding zone(WZ) is modelled with the several, narrow finite elements whose material characteristics are based on the experimental results and the analytical equations. In order to show an application of the developed weld element the stamping process of auto-body door inner panel is simulated. FEM predictions are compared and showed good agreements with experimental observations.

  • PDF

조선강재의 최적 용접조건에 관한 연구 (Study on Optimal Welding Condition for Shipbuilding Steel Materials)

  • 김옥환
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.

X-선 투과검사를 이용한 저항 점용접부 품질평가기법 (Weld Quality Evaluation Method for the Resistance Spot Welds using X-ray Transmission Inspection)

  • 이종대;이소정;방정환;윤길상;김목순;김준기
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.1-7
    • /
    • 2014
  • For the resistance spot welds of CR1180 and GA1180 TRIP steels, the weld quality evaluation method using the digitalized X-ray transmission imaging apparatus was investigated in comparison with the crosssectional examination method. In the case of the resistance spot welding of CR1180, three circular regions, such as WZ(white zone), GZ(grey zone) and DZ(dark zone), appeared on X-ray image and they corresponded to the diameters of indentation mark, nugget and corona bond, respectively. The variation of X-ray transmission thickness due to the thickness variation of the weld seemed to be mainly responsible for the formation of those contrasts. The X-ray image contrast formed from the variation of transmission thickness at the outer border line of DZ could also enable the inspections of the notch shape, nonuniformity of the welding pressure and spatter from its sharpness, concentricity and the normal straight line, respectively. The X-ray image of the resistance spot weld of galvannealed GA1180 TRIP steel was very similar to that of CR1180 TRIP steel except the crown shaped outer border line of DZ which was considered to be due to the melting behavior of zinc having the boiling temperature even lower than the melting temperature of steel.

레이저 용접 합체박판의 성형한계도와 스탬핑 금형 성형해석에 적용 (Forming Limit Diagram of Laser Welded Blank and Its Application to Forming Analysis of Stamping Dies)

  • 금영탁;구본영;박승우;유석종;이경남
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.3-9
    • /
    • 2000
  • The new FLD of the laser welded blank, which includes FLCs of welded zone and base metals, is introduced. For the forming limits of welded zone, the hemispherical dome punch tests were performed with various widths of asymmetric specimen. The FLC0 as well as the dome height at fracture associated with various specimen widths in the same and different thickness combinations were found to see the formability depending on thickness combinations. In order to show the application of the new FLD, the measured strains of squared cup drawing and simulated strains of door inner panel stamping were compared with those of FLCs. The successful prediction of fracture in the applications reveals that the forming limits of welded zone and base metals should be separately found for more accurate evaluation of the formability and workability of the laser welded blank.

  • PDF