• Title/Summary/Keyword: Welding Speed

Search Result 814, Processing Time 0.023 seconds

High speed precision welding using by single mode fiber laser (파이버 레이저에 의한 고속정밀 용접)

  • Park, Seo-Jeong;Lee, Mok-Yeong;Jang, Ung-Seong;Kim, Gi-Cheol;Cheon, Chang-Geun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.94-96
    • /
    • 2005
  • Welding process of ultra thin stainless steel foil was investigated using a single mode Yb-fiber laser with a CW maximum output power 40W. In micro welding, critical power density for keyhole welding was 1 to 2 orders larger higher than in macro-welding due to larger thermal conduction, extremely high speed welding becomes possible.

  • PDF

FSW Process Optimization for Al 2519 Alloys and Its Joint Characteristics(II) (후육 고강도 Al 2519합금의 FSW 접합기술 및 접합부 특성(II))

  • Kim, Heung-Ju;Jang, Ung-Seong;Yang, Gwang-Ha;Bang, Han-Seo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.174-176
    • /
    • 2005
  • On the basis of successful experiences and data from author's past experimental results of friction stir welding on thin aluminum plates, thick aluminum plate of high strength 2000 series has been carried out in this study. For various combination of rotating speed, welding speed and tool (RIWRC38-C) shape, the butt welded specimens has been prepared to check the metallurgical characteristics, hardness distributions and defects. From the results, feasible welding conditions have been obtained as 450 rpm rotating speed and 5 mm/min welding speed. Using these optimum welding parameters, 38.1mm-thickness A2519-T87 plates have been FSWelded in single pass. A good weld surface appearance and defects free weld zone has been observed in X-ray inspection. Softened region has been generated by dissolution of precipitates and coarsened microstructure in the stir zone after FSWeld.

  • PDF

Current waveform Control of Pulse MAG Welding Power Source for High Speed Welding of Thin Plates (박판의 고속용접을 위한 펄스MAG 용접전원의 파형제어에 관한 연구)

  • Gu, Heon-Hoe;Kim, Tae-Jin;Kim, Jun-Hong;Lee, Hyeon-U;Jo, Sang-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.571-578
    • /
    • 1999
  • Current waveform control of pulse MAG welding power source is studied so that welding of thin plates may obtain high speed and improved performance. In this paper, waveform control method is proposed, digital controller using DSP is able to control the current waveform precisely. High speed welding of thin plates using pulse MAG welding method is made possible. Performance test for 1.2mm thin plates is carried out, output waveform and welding performance is analyzed.

  • PDF

Investigation on friction stir welding and friction stir processing for 5456-H116 (5456-H116 합금에 대한 마찰교반 용접과 마찰교반 프로세싱에 관한 연구)

  • Kim, Seong-Jong;Park, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.242-243
    • /
    • 2009
  • Friction stir welding and friction stir processing is a new solid state processing technique for ioining and micro..structural modification in metallic materials. It has been applied not only joining for light metals but also modification of the microstructure to enhance mechanical properties. In thin study, we investigated the mechanical properties for applied friction stir welding and processing under various parameters such as probe diameter, probe type, traveling speed and rotating speed for 5456-H116 AI allov. As a result of experiments, optimum condition of friction stir welding is traveling speed of 15mm/min, rotating speed of 500RPM at 6mm diameter probe. Moreover, in the case of friction stir processing, the optimum condition is traveling speed of 15mm/min, rotating speed of 250RPM at full screw probe. As above mentioned, the mechanical characteristics enhanced with the decreasing of traveling speed and the increasing of friction areas because of plastic flow due to high friction heat. These result can be used as reference data for ship repairment.

  • PDF

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network (인공신경망을 이용한 이면비드 예측 및 용접성 평가)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

HIGH SPEED VARIABLE SQUARE WAVE AC SUBMERGED ARC WELDING -FREQUENCY/BALANCE STUDY .250″ PLAIN CARBON STEEL

  • Reynolds, Jon-O;Sean P. Moran
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Advancements in silicon phase control (SCR) technologies provide an arc welding power supply that has the capability to allow the alteration of the Alternating Current (AC) welding output. These technologies provide a square wave output involving sixteen frequency selections and multiple balance selections. While an AC out put is known to minimize magnetic disturbances associate with Direct Current (DC), the potentials of a non-sinusoidal waveform have not been explored. The focus of the paper is to determine the effects that the frequency and balance of an AC wave form output will have upon a high speed Submerge Arc (SAW) application. The test matrix of the project includes welding .250" steel plate. Joint type is square groove with a travel speed of 65 IPM. Each of the weld parameters was held constant, only the frequency and/or balance were altered between welds. Each frequency/balance combination involved three-gap spacing. Upon completion of the welds the bead profiles were measured and recorded. A relationships/trends were observed with various frequency and balance values. Optimum frequency and balance values were found for the .250" square groove application which permit consistent weld sizing, ease of slag removal, and minimal plate distortion.

  • PDF

Friction Stir Welding Characteristics of Al5052 Aluminium Alloy by Design of Experiment (실험계획법에 의한 Al5052 알루미늄 합금의 마찰교반용접특성)

  • Kang, Dae-Min;Jang, Jin-Suk
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.11-16
    • /
    • 2015
  • Welding is very popular method for joining two or more metals. In this paper, the three-way factorial design was adopted for obtaining the optimum friction stir welding conditions of Al 5052 alloy. Tools of shoulder diameter of 9, 12, 15 mm and pin length of 1.5 mm were used. Also the material's dimension for welding was $100{\times}100{\times}2mm$, and the tensile specimens were worked by water-jet technique. Welding variables were shoulder diameter, rotating speed of tool and welding speed. As far as this work is concerned, optimum condition for friction stir joint of Al 5052 alloy was predicted as the shoulder diameter of 15 mm, welding speed of 500mm/min and rotating speed of 1000 rpm. In addition, the presumed range of tensile strength under the optimal conditions is estimated to be $208.3{\pm}5.7$ MPa with 99% reliability.