• Title/Summary/Keyword: Welding Speed

Search Result 812, Processing Time 0.032 seconds

Al-7020의 Pulse-GMA 용접에 관한 연구 1

  • 김재웅;허장욱;나석주;이용연
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.47-55
    • /
    • 1988
  • This paper reports on a study of the influence of welding variables on the weld shape of Al-7020 in pulse-GMA welding. Five variables, i.e., wire feed rate, peak pulse current, welding speed, welding votage, and pulse frequency were investigated for their effects on the weld shape. From the results of the 2$^{n-1}$ fractional factorial design, quantitative effects of each variable and the interaction of two variables were obtained, and consequently wire feed rate, welding voltage, and welding speed were determined as the main welding variables. Supplementary experiment was performed for ivestigating the detailed relationship between the main variables nd the seld shape. In this experiment, the penetation of the seldment increased when the wire feed rate was raised, nad the bead width increased when the welding voltage was raised or the welding speed was reduced.d.

  • PDF

A Study on the Finite Element Analysis in Friction Stir Welding of Al Alloy (알루미늄 합금재의 마찰교반용접 유한요소해석에 관한 연구)

  • Lee, Dai Yeal;Park, Kyong Do;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.81-87
    • /
    • 2015
  • In this paper, the finite element method was used for the flow and strength analysis of aluminum alloy under friction stir welding. The simulations were carried out using Sysweld s/w, and the modeling of the sheet was executed using Unigraphics NX6 s/w. The welding variables for the analysis were the shoulder diameter, rotating speed, and welding speed of the tool. Additionally, a three-way factorial design method was applied to confirm the effect of the welding variables on the flow and strength analysis with variance analysis. From these results, the rotating speed had the greatest influence on the maximum temperature, and the maximum temperature was $578.84{\pm}12.72$ at a confidence interval of 99%. The greater the rotating speed and shoulder diameter, the greater the difference between maximum and minimum temperature. Furthermore, the shoulder diameter had the largest influence on von Mises stress, and the von Mises stress was $184.54{\pm}12.62$ at a confidence interval of 99%. In addition to the increased shoulder diameter, welding speed, and rotating speed of the tool increased the von Mises stress.

Influence of the Welding Speeds and Changing the Tool Pin Profiles on the Friction Stir Welded AA5083-O Joints

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.44-51
    • /
    • 2017
  • In the present study, AA 5083-O plates are joined by friction stir welding technique. A universal milling machine was used to perform the welding process of the work-pieces which were fixed on the proper position by a vice. The joints were friction stir welded by two tools with different pin profiles; cylindrical threaded pin and tapered smooth one at different rotational speed values; 400 rpm and 630 rpm, and different welding speed values; 100 mm/min and 160 mm/min. During FSW of each joint, the temperature was measured by infra-red thermal image camera. The welded joints were inspected by visually as well as by the macro- and microstructure evolutions. Furthermore, the joints were tested for measuring the hardness and the tensile strength to study the effect of changing the FSW parameters on the mechanical properties. The results show that increasing the rotational speed results in increasing the peak temperature, while increasing the welding speed results in decreasing the peak temperature for the same tool pin profile. Defect free welds were obtained at lower rotational speed by the threaded tool profile. Moreover, the threaded tool pin profile gives superior mechanical properties at lower rotational speed.

Visualization of weld plume using high-speed holography (고속 홀로그래피에 의한 용접 플룸 거동의 가시화)

  • 백성훈;박승규;김민석;정진만;김철중
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The real-time holographic interferometer with digital high-speed camera is applied to the experimental study of laser induced plasma/plume in pulsed Nd:YAG laser welding. A pulsed Nd:YAG laser with 1.2 kW average power is applied to generate laser induced plume. The recording speed of the high-speed camera is 3,000 f/s. The high speed photographs of weld plume without another visualization method, are compared with the visualization photographs with holographic interferometer. The radiation intensity from the laser induced plume is recorded by the high speed photographs, which fluctuated during laser radiation and disappeared after laser end. The density distribution of the plume is recorded by the holographic visualization method. The experimental results show the process of generation of the laser induced plasma/plume, and give the feasibility of quantitative measurement of laser induced plume in laser welding.

  • PDF

A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of Al6082-T6 (Al6082-T6의 MIG용접부에서 입열량에 따른 열영향부의 연화와 인장특성에 관한 연구)

  • Baek, Sang-Yeob;Park, Kyung-Do;Kim, Won-Il;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • Al6082-T6 is widely used because of its corrosion resistance and excellent strength. HAZ softening occurs in MIG welding process for this aluminium alloys because this aluminium alloy is heated to higher temperature than its aging temperature during welding. Therefore, low heat input and minimum standard deviation of heat input are required for narrow HAZ width and, for higher strength of welds. In this study, Al6082-T6 was used to examine for HAZ softening with various heat input in aluminium MIG welding. For weldments, micro hardness was measured and tensile test was carried out. Minimum hardness was increased at high speed welding such as 80cm/min and 120cm/min in welding speed comparing with 40cm/min. Also, in case of high speed welding such as 80cm/min and 120cm/min, tensile strength of weldments was increased about 10% comparing with low speed welding(40cm/min).

A Study on the Welding Conditions of Weldability of Team Welding for Galvanized Steel Sheets of Automotive (자동차용 아연도금강판의 심 용접조건과 용접성에 관한 연구)

  • 임재규;정균호;국중하
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • This paper is studied about welding conditions and weldability of seam welding for galvanized steel sheet of automotive. The fuel tank of automobile is made by seam welding to be required of airtight or oiltight. This method have required a short time for welding, simplicity operation progress and little HAZ. Especially, it has more less residual stress and transformation than different welding progress. So, this study is for decreasing the leakage occurrence rate and to make standard operating condition table anyone can operate easily. Therefore, this study is analyzed the optimum conditions of seam welding for making the automobile with galvanized steel sheets by means of observing the microstructure and configuration back projection, RT, tensile-shear strengths test and SEM. Optimum conditions of seam welding obtained as follows, current 17.2-17.6kA speed 1.0m/min weld time 4:10:6 and current 16.5-17.4kA, speed 0.83m/min, weld time 4:10:4 at t1.0, and current, 18.5-18.9kA, speed 0.8m/min, weld time 4:10:4 and current 16.5-17.4kA, speed 0.68m/mi, weld time 4:10:2 at t1.6.

  • PDF

The Welding/Welding History DB Construction of OLP System For the Multi-Layer Welding on the Thick Steel Plates In Low Speed Diesel Engines (대형 저속 디젤엔진의 후판 다층 용접을 위한 OLP 시스템의 용접 용접/용접이력 DB 구축)

  • 김장규;이승환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.760-763
    • /
    • 2004
  • This work presents OLP system made independently in HSD for sub-assembly welding robot system set already and assembly welding robot system developed lately on the low speed diesel engines. This paper focuses on the DB module and the job creation based upon it. Also, It contains the welding history DB that saves the information of jobs executed after welding.

  • PDF

Development of Continuous/Intermittent Welding Mobile Robot (연단속 용접 주행로봇의 개발)

  • 강치정;전양배;감병오;신승화;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

Dissimilar Metal Welding of Nd:YAG Laser of Austenitic Stainless Steel and Medium Carbon Steel (중탄소강과 오스테나이트계 스테인레스강의 Nd:YAG 레이저의이종금속 용접)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1560-1565
    • /
    • 2005
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

  • PDF

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.