• Title/Summary/Keyword: Welding Quality Control

Search Result 216, Processing Time 0.027 seconds

A Study on Detecting and Monitoring of Weld Root Gap using Neural Networks (신경회로망을 이용한 용접 Root Gap 검출과 모니터링에 관한연구)

  • Kang Sung-In;Kim Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1326-1331
    • /
    • 2006
  • Weld root gap is a important fact of a falling-off weld quality in various kind of weld defect. The welding quality can be controlled by monitoring important parameters, such as, the Arc voltage, welding current and welding speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using neural networks for detecting and monitoring of weld root gap and bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and detect the welding defects.

Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding ($CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석)

  • Seo J.H.;Kim I.S.;Kim I.J.;Son J.S.;Kim H.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

Development on Tandem GMA Welding System using Seam Tracking System in Pipe Line (용접선 추적시스템을 적용한 탄뎀 원주 용접시스템 개발)

  • Lee, JongPyo;Lee, JiHye;Park, MinHo;Park, CheolKyun;Kim, IllSoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.1007-1013
    • /
    • 2014
  • In this study to improve the productivity, advantage Tandem circumferential weld process of seam tracking system was applied for the laser vision sensor. Weld geometry scanning laser vision sensor and PLC control unit are used to scan correct positioning of welding torch when the program is implemented so that it can correctly track the welding line. The welding experiment was conducted to evaluate the performance of laser vision seam tracking sensor in tandem welding process. The seam tracking several experiments was to determine the reliability of the system, welding experiments relatively good quality welding bead was confirmed. Furthermore, the PLC program for seam tracking was used to confirm the validity of the application of tandem welding process according to the benefits of increased productivity, which is expected to contribute to national competitiveness.

Development about Welding-process Automatic System on the department of Axle Casing Nut for Commercial Vehicle (상용차용 액셀 케이싱의 너트부 용접공정 자동화 시스템 개발)

  • Kim, Jae-Yeol;Yoo, Sin;Oh, Sung-Min;Jang, Jong-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.810-814
    • /
    • 1996
  • The purpose of this exclusive welding-machine process using the welding Torch-rotation form is to develop a mechanism which can solve the problem of twisted welding wires and cables. The technique was developed by revising the torch position and smooth controlling of both the formal and reverse rotation. Some of the advantages of using the Torch-rotation form over the Work-rotation technique are the practical uses of increased work space and link work with the automation system of the plant. Using this welding machine process, It is possible to design a specific tool in order to solve the implemental problem. And I produced a control plate which can manipulate the progress of the entire process at the work place. Even if another kind of axle casing's welding work is used this process can be utilized if the fixed tip and work is produced and changed. The development if this exclusive welding-machine could reduce the manpower of skilled welding labor and after considerable analysis, this machine was found to increase productivity and better quality product in comparison to the handmade product.

  • PDF

Method to Overcome Gap Variation by Control of Arc Force in Root Pass Welding for Back Bead by GMAW (GMAW 루트패스 이면비드 용접에서 아크력제어에 의한 갭변동 극복 방법)

  • Son, Chang-Hee;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.77-81
    • /
    • 2011
  • In most industry, manual GTAW welding is preferred for formation of stable back bead in root weld of butt joint. However, manual GTAW welding has low productivity as compared with GMAW, also it has unstable bead quality which depend on skilled workers. So it is necessary to develop process of root pass welding by using automation GMAW that have stable back bead formation and high productivity. In this paper, the design of U-groove with 3mm root face was applied to extend the tolerance of misalignment in condition of standard root gap 1.5mm. Consequently, for the formation of stable back bead in root pass of butt welding, in case of the narrow root gap(0.5mm) the large arc force was applied by increasing the current and voltage. In case of the large root gap(2.5mm), the small arc force was applied by decreasing the current and voltage. Considering the various root gap, the required deposited metal was controlled by welding speed only.

A Study on the Prediction of Welding Flaw Using Neural Network (인공 신경망을 이용한 실시간 용접품질 예측에 관한 연구)

  • Cho, Jae Hyung;Ko, Sang Hyun
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.217-223
    • /
    • 2019
  • A study in predicting defects of spot welding in real time in automotive field is essential for cost reduction and high quality production. Welding quality is determined by shear strength and the size of the nugget, and results depend on different independent variables. In order to develop the real-time prediction system, multiple regression analyses were conducted and the two dependent variables were obtained with sufficient statistical results with three independent variables, however, the quality prediction by the regression formula could not ensure accuracy. In this study, a multi-layer neural network circuit was constructed. The neural network by 10 dynamic resistance variables was constructed with three hidden layers to obtain execution functions and weighting matrix. In this case, the neural network was established with three independent variables based on regression analysis, as there could be difficulties in real-time control due to too many input variables. As a result, all test data were divided into poor, partial, and modalities. Therefore, a real-time welding quality determination system by three independent variables obtained by multiple regression analysis was completed.

A Study on Automatic Seam Tracking and Weaving Width Control for Pipe Welding with Narrow Groove (협개선 배관 용접을 위한 용접선 추적 및 위빙 폭 자동 제어에 관한 연구)

  • Moon, Hyeong-Soon;Lee, Seok-Hyoung;Kim, Jong-Jun;Kim, Jong-Cheol
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.73-80
    • /
    • 2013
  • From broad point of view, seam tracking has been one of main issues with respect to welding automation. Several attempts have been successful for seam tracking of fixed weaving width. As a solution of the seam tracking methods for varying groove width, the visual sensors such as CCD cameras have been adopted. Although the vision sensing techniques can achieve high accuracy, the weak point is that well-prepared vision sensor environment should be required to obtain high-quality visual measurements which can be easily affected by significant noises in industrial areas. This paper proposed an alternative seam tracking algorithm for narrow groove. A special measurement device for arc voltage, in this study, is developed to enhance the reliability of the measured welding signals. Based on the developed arc sensor algorithm, an automatic weld-width tracking algorithm is also proposed, which is able to predict the weld-position more accurately. The usefulness of the automatic weld-width tracking algorithm was well verified by applying it to gas tungsten arc welding (GTAW).

  • PDF

Manual Application of Adhesives

  • Hellmanns, Mark;Bohm, Stefan;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.24-27
    • /
    • 2006
  • International standards claim the best possible reliability in industrial manufacturing processes. This is also essential for the application with manual applicators. The application of adhesives with manual applicators is one of the most frequently used application techniques. The range of application reaches from the building of prototypes in the automobile industry over the use in single or small-batch manufacturing up to applications in crafts enterprises. Conventional manual applicators for adhesives and sealants don't fulfill the demands in international standards for the best possible reliability. Only the worker is able to control the quality and the quantity of the bond. A velocity-controlled manual applicator solves these restrictions. Special sensors and micro controllers calculate the flow-rate, the velocity and the location of the manual applicator. This leads to stable and repeatable application processes which are claimed in international standards. The location of the bond can be compared with the nominal value, so that it is possible to check the quality of the bond during application. Furthermore there is the potential to document the data of the manufacturing process.

  • PDF

Development of GMAW Process with Twin Torch for Wide Overlay using Compound Filler Plate (분말 용가재판을 사용한 광폭 오버레이용 트윈토치 GMAW 공정개발)

  • Hwang, Kyu-Min;Kim, Sung-Deok;Jung, Byung-Ho;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • Generally, wear plate is steel plate having improved surface contact strength and impact strength by surface hardening which is welded using materials with good corrosion resistance, wear resistance and thermal resistance property. CFP GMAW(Compound Filler Plate Gas Metal Arc Welding) is the cladding method using GMAW with the CFP, which is bound with waterglass, on the substrate. It has advantages of reducing compound powder loss, uniform penetration, and preventing hardness decrease. To develope mass production technique of CFP GMAW process for production of high quality wear plate, the method for controling shallow penetration and increasing productivity is required. In this study, twin torch method applied to CFP GMAW process for increasing productivity. And the method was developed by controling penetration control, CFP dry time, gas formation flux and water glass concentration. As a result, applying twin torch method to CFP GMAW process was possible and high quality wide bead could be made without overlap joint.