• Title/Summary/Keyword: Welding Parameters

Search Result 786, Processing Time 0.023 seconds

Study on Structural Analysis and Manufacturing of Polyethylene Canoes (폴리에틸렌 카누의 구조해석과 제조에 관한 연구)

  • Park, Chan-Kyun;Kim, Min-Gun;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Canoes are usually made from wood or FRP. However, today environment-friendly materials are preferred, and hulls made of FRP are prohibited in some countries. Polyethylene can be recycled and so is suitable for synthetic canoe construction. We used 3D Boat-Design to determine the hydrostatic properties of the canoe. Flow-structure coupled analysis was performed using ANSYS Workbench R12.1. The hull pressure and passenger weight were considered as canoe loading factors. The key parameters for the canoe are the design variables. The constraints are as follows: (1) The maximum stress must not exceed 50% of the polyethylene yield stress; and (2) the canoe weight must not exceed 50 kg. The optimal structural conditions were obtained by the response optimization process. The components of the canoe hull were manufactured from polyethylene pipes and joined by thermal fusion methods. Tests showed that the polyethylene canoe had better performance than existing canoes.

Analytical Study on the Development of High-Performance Orthotropic Steel Deck considered the Fatigue Behaviors of Structural Details (구조 상세부의 피로거동을 고려한 고성능 강바닥판 개발에 관한 해석적 연구)

  • Kyung, Kab Soo;Shin, Dong Ho;Kim, Kyo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Various fatigue damages have been reported in orthotropic steel deck structures put upon girders. These damages are caused by complex behaviors of the deck, which is directly subjected to vehicle loads. To estimate the causes of fatigue cracks at the welded connected parts of the trough rib and the flor beam, and the trough rib and the deck plate, in orthotropic steel deck structures, FE analyses were first, performed in this study. Parameter studies were carried out to suggest effective structural details that consider fatigue, in which the main parameters are the thickness of the deck plate, the shape of the connection of the trough rib and the flor beam such as the slit form, and the welding length. This study suggests that the effective structural details improved the fatigue strength and discusses.

Flexural Behavior of Concrete Filled Seismic Resistant Steel Tubular Columns Subjected to Axial and Cyclic Lateral Load (축력과 반복수평력을 받는 콘크리트 충전 내진 각형강관 기둥의 휨거동 특성)

  • Kim, Byung-Ho;Shim, Hyun-Ju;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.317-326
    • /
    • 2011
  • Today there is a growing range of applications for Concrete-Filled Steel Tube (CFT) member because of its superior performance. Ductility estimation test of concrete-filled seismic resistant steel tubular columns, subjected to axial and cyclic lateral load, was carried out in this study. Seismic resistant steel tubes are manufactured using SN400B plates by a two-seam welding at center of the column width for cold press-formed shape plates of two pieces. A total of eight specimens were manufactured and tested with the parameters of width-thickness ratio of steel tubular column, axial load ratio, and loading conditions to act axial and cyclic lateral load two dynamic actuators were used. From test results, flexural strength, deformation capacity, energy dissipation capacity, and ductility behavior of columns were analyzed.

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

Accelerated Life Prediction for STS301L Gas Welded Joint (I) - Fillet Type - (STS301L 가스용접 이음재의 가속수명예측 (I) - Fillet Type -)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.467-474
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for railroad cars and commercial vehicles. Structures made of stainless steel sheets are commonly fabricated by gas welding, For the fatigue design of gas welded joints such as fillet joints, it is necessary to obtain design information of the stress distribution at the weldment as well as the fatigue strength of the gas-welded joints. Further, the influence of the geometrical parameters of gas-welded joints on stress distribution and fatigue strength must be evaluated. in this study, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, the ${\Delta}P-N_f$ curves were rearranged on the basis of the ${\Delta}{\sigma}-N_f$ relation for the hot-spot stresses at the gas-welded joints. These results, were used for conducting an accelerated life test(ALT) From the experiment results, an acceleration model was derived and factors were estimated. The objective is to obtain the information required for the analysis of the fatigue lifetime of fillet welded joints and for data analysis by the statistic reliability method to save time and cost and to develop optimum accelerated life prediction plans.

Development of a Simulation Tool and a Monitoring System for Laser Welding Quality Inspection (레이저 용접품질 검사기법 개발을 위한 시뮬레이션 툴과 이를 이용한 감시 시스템의 개발)

  • 이명수;권장우;길경석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.985-993
    • /
    • 2001
  • Neural networks are shown to be effective in being able to distinguish incomplete penetration-like weld defects by directly analyzing the plasma which is generated on each impingement of the laser on the materials. The performance is similar to that of existing methods based on extracted feature parameters. In each case around 93% of the defects in a database derived from 100 artificially produced defects of known types can be placed into one of two classes: incomplete penetration and bubbling. The present method based on classification using plasma is faster, and the speed is sufficient to allow on-line classification during data collection.

  • PDF

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

A New Steel Jacketing Method for Concrete Cylinders and Comparison of the Results with a Constitutive Model

  • Choi, Eun-Soo;Kim, Man-Cheol
    • International Journal of Railway
    • /
    • v.1 no.2
    • /
    • pp.72-81
    • /
    • 2008
  • This paper introduces a new steel jacketing method for reinforced concrete columns with lap splice and evaluates its performance by a series of axial tests of concrete cylinders. At first, 45 concrete cylinders were fabricated with varying the design compressive strengths of 21, 27 and 35 MPa and, then, the part of them was jacketed with two-split-steel jackets under lateral confining pressure. The parameters in the first test were the steel jacket's thickness and the existence of adhesive between steel and concrete surface. In the second test, whole steel jackets were used to wrap cylinders with lateral pressure. Also, a double-layer jacket consisted of two steel plates was introduced; a cylinder was jacketed by two steel plates one after another. The effect of the new method was verified through comparing the results of the compressive tests for plain and jacketed cylinders. The steel jacket built following the new method showed good results of increasing the compressive strength and ductility of the jacketed cylinders with respect to the plain cylinders. The thicker steel jackets showed the more increased compressive strength, and the ductility at failure depended on the welding quality on steel jackets. The adhesive between steel and concrete surface reduced the confining effect of the steel jackets. The whole jacket showed more ductile behavior than the two-split jackets. The double-layered jackets were estimated to possess an equal performance to that of a single steel jacket having the same thickness of the double-layered jacket. Finally, the experimental results were compared with the constitutive model of steel-jacketed concrete; which showed a good agreement between the experimental results and the models.

  • PDF

Seismic Performance of CFT column to H beam Connections Reinforced with T-stiffeners (T-스티프너로 보강된 CFT 기둥-H형강보 접합부의 내진성능)

  • Kim, YoungJu;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.701-709
    • /
    • 2003
  • The paper presented the seismic performance of T-stiffener moment connections for use in steel moment-resisting frames. The connections were strengthened by welding the vertical and horizontal clement of the T-stiffener to the beam flange and column f1ange. Finite clement analysis and experiments were conducted to determine the behavior of T-stiffener-reinforced connections. The results of the finite element analysis confirmed the effectiveness of the T-stiffener, whose horizontal element lengthened to mitigate local stress concentrations of the beam flange on the horizontal stiffener. Full-scale specimens were also tested cyclically to study hysteresis behavior. The main parameters used were the ratio of the T-stiffener to beam strength and the shape of the horizontal element. As the length of the horizontal element increased, the deformation capacity of the connections enhanced. Likewise, all specimens behaved according to the Ramberg-Osgood curve and showed stable hysteresis behavior.