• Title/Summary/Keyword: Welding Parameters

Search Result 786, Processing Time 0.028 seconds

A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance (마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구)

  • Kim, Ill Soo;Lee, Jong Pyo;Lee, Ji Hye;Jung, Sung Myoung;Kim, Young Su;Chand, Reenal Ritesh;Park, Min Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

A Study on the Relation between Bead Shape and Welding Parameters of GMA Welding far Die Remodeling (금형수정 GMA 용접에 있어서 용접조건과 비드 형상과의 상관관계에 관한 연구)

  • 김지태;나석주;김덕환;서만석
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.60-66
    • /
    • 2002
  • Almost every die fur automobiles must be corrected or remodeled for minor geometrical changes or for better hardness characteristics by arc welding process. Although many other kinds of arc welding processes have been automated with robots, this molten metal deposition process for die remodeling still depend entirely on experienced welders. In this study, the database for bead shapes with respect to welding parameters are constructed by experiments to automate the molten metal deposition by arc welding process. And the changes of welding parameters for inclined base metal are studied to consider the effect of die geometries fur the welding process.

A study on the Estimate of Weld Bead Shape and the Compensation of Welding Parameters by Considering Weld Defects in Horizontal Fillet Welding (수평필릿용접시 용접부형상의 예측과 용접결함발생시 적절한 용접변수의 보상에 관한연구)

  • 김관형;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.105-114
    • /
    • 1999
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important Parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding recess adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF

Welding Parameters Optimization of Pleated Type Metallic Filter Using response surface methodology (반응표면 분석법을 이용한 Pleated Type Filter의 용접조건 최적화에 관한 연구)

  • 박형진;강문진;최병구;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.39-41
    • /
    • 2004
  • This study is to optimize the condition of pulse parameters using the response surface method in micro pulse TIG welding of pleated type metallic filter. The input parameters used were pulse current, base current, pulse duty, frequency and welding speed and the hydraulic pressure was used as the output parameter. The central composite design was designed using second order regression model, As the results, the optimal welding condition to manufacture the pleated type metallic filter was obtained.

  • PDF

An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method (다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF

The Effects of GMAW Parameters on Penetration, Hardness and Microstructure of AS3678-A350 High Strength Steel

  • Kaewsakul, Nut;Putrontaraj, Rungsuk;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.169-178
    • /
    • 2015
  • This research aims to study the effects of various welding parameters in gas metal arc welding (GMAW) process on welding penetration, microstructure and hardness of AS3578-A350 high strength steel with the thickness of 10 mm. The welding process parameters were a welding current of 100-200A, an arc voltage of 20-30V, a welding speed of 20-60 cm/min and a gas shielding type of Ar and $Ar+CO_2$. The summarized experimental results are as follows. An increase of the welding current and voltage affected to increase the penetration depth of the joint. However, when the welding speed was decreased, it increased the penetration depth of the joint. Using the Ar gas for shielding the weld area, produced the higher penetration depth and the less narrow weld bead than the joint that was shielded by the mix gas of $Ar+CO_2$. The variation of the welding process parameters affected to produce the various microstructures of weld metal and heat affected zone and also showed the various kind of hardness along the weld joint.

A Study on Development of STACO Model to Predict Bead Height in Tandem GMA Welding Process (탄템 GMA 용접공정의 표면비드높이 예측을 위한 STACO모델 개발에 관한 연구)

  • Lee, Jongpyo;Kim, IllSoo;Park, Minho;Park, Cheolkyun;Kang, Bongyong;Shim, Jiyeon
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.8-13
    • /
    • 2014
  • One of the main challenges of the automatic arc welding process which has been widely used in various constructions such as steel structures, bridges, autos, motorcycles, construction machinery, ships, offshore structures, pressure vessels, and pipelines is to create specific welding knowledge and techniques with high quality and productivity of the production-based industry. Commercially available automated arc welding systems use simple control techniques that focus on linear system models with a small subset of the larger set of welding parameters, thereby limiting the number of applications that can be automated. However, the correlations of welding parameters and bead geometry as welding quality have mostly been linked by a trial and error method to adjust the welding parameters. In addition, the systematic correlation between these parameters have not been identified yet. To solve such problems, a new or modified models to determine the welding parameters for tandem GMA (Gas Metal Arc) welding process is required. In this study, A new predictive model called STACO model, has been proposed. Based on the experimental results, STACO model was developed with the help of a standard statistical package program, MINITAB software and MATLAB software. Cross-comparative analysis has been applied to verify the reliability of the developed model.

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

An Efficient Algorithm to Develop Model for Predicting Bead Width in Butt Welding

  • Kim, I.S.;Son, J.S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.12-17
    • /
    • 2001
  • With the advance of the robotic welding process, procedure optimization that selects the welding procedure and predicts bead width that will be deposited is increased. A major concern involving procedure optimization should define a welding procedure that can be shown to be the best with respect to some standard and chosen combination of process parameters, which give an acceptable balance between production rate and the scope of defects for a given situation. This paper presents a new algorithm to establish a mathematical model f3r predicting bead width through a neural network and multiple regression methods, to understand relationships between process parameters and bead width, and to predict process parameters on bead width for GMA welding process. Using a series of robotic arc welding, additional multi-pass butt welds were carried out in order to verify the performance of the neural network estimator and multiple regression methods as well as to select the most suitable model. The results show that not only the proposed models can predict the bead width with reasonable accuracy and guarantee the uniform weld quality, but also a neural network model could be better than the empirical models.

  • PDF