• Title/Summary/Keyword: Welding Length

Search Result 351, Processing Time 0.035 seconds

Dissimilar Metal Welding of SM45C and STS304 by means of CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 SM45C와 STS304의 이종금속용접)

  • 신호준;유영태;임기건;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1369-1375
    • /
    • 2004
  • For many years and primarily for economical reasons, Dissimilar Metal Welds have been used as transition joints in a variety of equipment and applications. But Dissimilar Metal Welds have several fabrication and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Laser welding techniques have been characterised for various materials. In this paper, the laser weldability of STS304 stainless steel and SM45C at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested

  • PDF

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

A Study on the Selection of Fillet Weld Conditions by Considering the Tack Welds (가접부를 고려한 필릿 용접조건의 선정에 관한 연구)

  • Lee Jun-Yeong;Kim Jae-Yong;Kim Cheol-Hui
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.304-306
    • /
    • 2006
  • Positioning the workpiece accurately and preventing the weld distortion, tack welding is often performed before main welding in the construction of welded structures. The weld bead size of the tack weld is determined according to the workpiece thickness, weld length, weld joint type etc. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually adopted for the uniform weld bead profile. In this study, an experimental method for the selection of optimal welding condition was proposed in the fillet weld which was done over the tack weld. This method uses the response surface analysis in which the leg length and the reinforcement height of weld bead were chosen as the quality variables of weld bead profile. The overall desirability function, which was combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. From the result, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

  • PDF

The Effects of Start Block and Arc Length on Melt Through and Unmelted Zone at Welding Start in High Speed Plasma Arc Welding of Thin Plate (박판 고속 플라즈마 맞대기 용접에서 용접 시작부의 용락과 미용융에 미치는 시작블록과 아크길이의 영향)

  • Chu, Yong-Su;Hong, Seong-Joon;Jung, Jae-Pil;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In welding of thin plate, some defects such as melt through and unmelted zone occur easily at welding start, however there is a limited study on those problems. Therefore the effects of start block and arc length on melt through and unmelted zone at start were investigated in this study. When start block height was lower than base metal, there was melt through at start. And when the height was even with base metal, no unmelted zone existed. Unmelted zone was increased as start block height increased from 0mm to 0.5mm. However unmelted zone was not much changed as the height increasing from 0.5mm to 1.0mm. When gap existed between start block and base metal, melt through occurred. However, unmelted zone was increased as the contact force of start block on base metal was increased from 0kgf to 7.5kgf. And when arc length was decreased from 3.8mm to 3.0mm, unmelted zone was decreased. It was concluded that the optimum condition to prevent melt through and to minimize unmelted zone would be with start block height 0.25mm, contact force 3.0kgf, and arc length 3.4mm. This optimum condition was applied to the mass production line and resulted in satisfied outcome.

Bead Visualization Using Spline Algorithm (스플라인 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Maeng-Nam
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.54-58
    • /
    • 2016
  • In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.

Development of Measurement System for Welding Bead Shape using LabVIEW (LabVIEW를 이용한 용접비드 형상 계측시스템 개발)

  • Kang, Hoon-Hyo;Lee, Da-Hye;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.189-194
    • /
    • 2007
  • Recently, as consumer's claim fur car safety is increased, quality inspection method fur welding zone is strengthened. Therefore, from the methods that depend on welding zone bead shape size of seat frame in macrography or passive examination, the quality control by whole recording inspection is required. In this study, the system that is measuring automatically if worker checks welding bead fur quality inspection of seat frame is developed using LabVIEW. If the quality standard for the bead width and length of welding zone is inputted, the system measures automatically whether welding zone is bead length or bead width. Measured data is preserved by points and quality recording of welding zone is stored. The car seat きme welding zone is applied and experimented. The results gave good influence o9 the quality control of work efficiency.

  • PDF

Effects of Welding Parameters on Diffusible Hydrogen Contents in FCAW-S Weld Metal (셀프실드아크 용접금속의 확산성수소량에 미치는 용접변수의 영향)

  • Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.77-81
    • /
    • 2013
  • The effects of the welding parameters, contact tip-to-workpiece distance (CTWD), current, and voltage on the diffusible hydrogen content in weld metal deposited by self-shielded flux cored arc welding were investigated and rationalized by comparing the amount of heat generated in the extension length of the wire. This showed that as CTWD increased from 15mm to 25mm, the amount of heat generated was increased from 71.1J to 174.8J, and the hydrogen content was decreased from 11.3mL/100g to 5.9mL/100 g. Even if little difference was observed in the amount of heat generated, the hydrogen content was increased with an increase in voltage because of the longer arc length. A regression analysis showed that the regression coefficient of voltage in self-shielded flux cored arc welding is greater than that in $CO_2$ arc welding. This implies that voltage control is more important in self-shielded flux cored arc welding than in $CO_2$ arc welding.

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

A Horn of Half-Wave Design for Ultrasonic Metal Welding (초음파 금속 용착용 반파장 혼의 설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Ultrasonic metal welding is one of the welding methods which welds metal by applying high frequency vibrational energy into specific area at constant pressure, avaliable in room temperature and low temperature. Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper focused to horn design, its length L was set to 62mm by calculating vibration equation. By performing modal analysis with various shape variable b times integer, when length of b is 30mm the output was 39,599Hz at 10th mode. Also by performing harmonic response analysis, the frequency response result was 39,533Hz, which was similar to modal analysis result. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately 8.5${\mu}m$ at 40,000Hz, and maximum amplitude was 12.3${\mu}m$. Therefore, it was verified that the ultrasonic metal welding horn was optimally designed.

Modeling of Are Light Intensity and Its Application to Weld Seam Tracking in GMAW (GMA용접의 아크빛 모델 및 용접선 추적에의 응용)

  • 유용상;최상균;유중돈;선우희권
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.113-121
    • /
    • 1996
  • The arc sensor has been most widely used for weld seam tracking through welding current or voltage variation. In this work, the relation between the arc light intensity and welding condition is investigated using heat balance in the Plasma for its possible application to seam tracking in the GMAW process. The arc light intensity is derived to be the function of the arc length and welding current Experiments are carried out to verify the proposed heat balance model. Performances of least square and integration methods to process the signals for seam tracking are compared experimentally. Predicted arc light intensity shows reasonably good agreement with experimental results. The weld seam is successfully tracked through the arc light intensity. The least square and integration methods demonstrate almost same performance of seam tracking with $CO_2$gas shielding.

  • PDF