• Title/Summary/Keyword: Welding Length

Search Result 351, Processing Time 0.026 seconds

A Study on Dynamic Characteristics of Welding Current and Arc Length At GMAW (GMA용접에서 용접전류와 아크 길이의 동특성에 관한 연구)

  • Lee, Tae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Welding variables and conditions in gas metal arc welding (GMAW) effect on the quality and productivity of the weld, extensive research efforts have been made to analyze the effect of the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the characteristics of the power supply, wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

A Study on Horizontal Fillet Welding by Using Rotating Arc (I) - Relation Between Welding Parameters and Weld Bead Shape (회전아크를 이용한 수평필릿 용접에 관한 연구 (I) - 공정변수와 용접비드형상의 관계 -)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.40-45
    • /
    • 2003
  • The high-speed rotating arc process forms a flat bead surface with decreased penetration depth because the molten droplets are deflected by centrifugal force. Therefore the rotating arc welding for horizontal fillet welding increases the leg length with the increase of rotation frequency and prevents the deflection of weld bead and overlap. In this study, the relationship between the welding parameters and the weld bead shape - leg length and undercut - are investigated experimentally. Consequently, the weld quality could be improved by rotating arc welding, and sound weld bead was achieved when applied to horizontal fillet welding with 4mm gap by avoiding the undercut which is inevitable for the conventional GMA welding methods.

Optimization of GMAW Process Parameters to Improve the Length of Penetration in EN 10025 S 235 Grade

  • Deshpande, M.U.;Kshirsagar, J.M.;Dharmadhikari, Dr. H.M.
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.74-78
    • /
    • 2017
  • In auto ancillary fabrication industry, GMAW is a very useful & important welding process and EN10025 S 235 Grade is common material used for manufacturing of two wheeler chassis. This research gives the detail influence of welding process parameters such as welding current, welding voltage, wire speed on the penetration in EN10025 S 235 Grade mild steel material. The experimentation of this research has been carried out by using three factors, three level Taguchi DOE method. To analyze & optimize the welding parameters & characteristics, analysis of variance, L9 orthogonal array & signal to noise ratio are used. Length of Penetration in addition to the depth of penetration is major concern in fillet welded joints, as the penetration decides the strength of the welded joint. After analysis of penetration in all 9 welded samples, optimize parameters readings verified & found probability value within 0.05.From this research it is come to know that welding current & welding voltage is major parameters which affects the penetration in welded joints.

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

A Study on Bending Fatigue Strength of One Side Fillet Welded T-Joint by SM 490A steel (Sm 490A강으로 제작된 T형 편면용접이음재의 굽힘피로강동에 관한 연구)

  • 엄동석;강성원;이태훈;이해우;조수형
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.134-141
    • /
    • 1998
  • In this study, a fillet size for bending fatigue strength of one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by bending fatigue test with or without edge preparation and burn through, with variation of joint shape. As a result, the following conclusions were obtained. (1) In one side fillet welded T-joint, the larger the leg length, the greater the bending fatigue strength. The increase in bending fatigue strength. (2) One side filet welded T-joint with edge preparation showed higher bending fatigue strength than that with twofold-large leg length and without edge preparation. (3) In one side fillet welded T-joint without edge preparation, both manual welding and automatic welding were carried out with same condition. In this case, automatic welding shoed deeper penetration and more increased horizontal leg length than manual welding, so that automatic welding offers grater bending fatigue strength. (4) For one side fillet welded T-joint without edge preparation, the ratio(h/t) of the leg length (h) and the main plate thickness (t) in which toe crack can occur was 1.2 over. (5) In one side fillet welded T-joint with edge preparation, the burn through led to reduced bending fatigue strength. However, this bending fatigue strength was higher than that of one side fillet welded T-joint without edge preparation and with a larger leg length.

  • PDF

Effect of Up-and-Down Torch Oscillation for Providing Uniform Heat Input along the Sidewall of Gap on Ultra Narrow Gap Welding (울트라 내로우 갭 용접에서 갭 내 고른 아크입열 분포를 위한 상ㆍ하 토치요동 효과)

  • 김두영;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.85-91
    • /
    • 2003
  • Narrow gap welding has many advantages over conventional V-grooved butt welding such as high productivity, small deformation and improved mechanical property of joints. With narrower groove gap, less arc heat input is expected will all the other advantages of narrow gap welding. The main defects of narrow gap welding include the lack of root fusion, convex bead surface and irregular surface, all of which have negative effects on the next welding pass. This paper suggests an up-and-down torch oscillation for ultra narrow gap welding with gap size of 5mm and investigates the proper welding conditions to fulfill the reliable and high welding quality. First, GMA welding model was suggested for ultra narrow gap welding system with Halmoy's model referenced for wire melting modeling. And the arc length in ultra narrow gap was defined. Secondly, based on the experimental results of up-and-down torch oscillation welding, phase shift of current and wire extension length were simulated for varying oscillation frequency to show that weld the bead shape in ultra narrow gap welding can be predicted. As the result, it was confirmed that reliable weld quality in ultra narrow gap welding can be achieved with up-and-down torch oscillation above 15Hz due to its ability to provide uniform heat input along the sidewall of gap.

Mathematical Models for Optimal Bead Geometry for GMA Welding Process

  • Park, C.E.;Li, C.S.;Kim, I.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.8-16
    • /
    • 2003
  • A major concern in Gas Metal Arc (GMA) welding process is the determination of welding process variables such as wire diameter, gas flow rate, welding speed, arc current and welding voltage and their effects on the desired weld bead dimensions and shape. To successfully accomplish this objective, 81 welded samples from mild steel AS 1204 flats adopting the bead-on-plate technique were employed in the experiment. The experimental results were used to develop a mathematical model to predict the magnitude of bead geometry as follows; weld bead width, weld bead height, weld bead penetration depth, weld penetration shape factor, weld reinforcement shape factor, weld bead total area, weld bead penetration area, weld bead reinforcement area, weld bead dilution, length of weld bead penetration boundary and length of weld bead reinforcement boundary, and to establish the relationships between weld process parameters and bead geomery. Multiple regression analysis was employed for investigating and modeling the GMA process and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (II) - The Effect According to Control of Overlap Weld Length - (순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(II) - 중첩부 길이변화에 따른 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.69-74
    • /
    • 2016
  • Because the pure titanium has superior corrosion resistance and formability compared with different material, it is widely used as material of welded heat exchanger. When the welding of heat exchanger is carried out, certain area in which welding start and end are overlapped occurs. The humping of back bead is formed in the overlap area due to partial penetration. Thus in this study, the experiments were carried out by changing the length and wave shape of overlap area, and then the weldabiliay was evaluated through the observation of microstructure, the measurement of hardness and tensile-shear strength test in the overlap area. When overlap length was 9.8mm, humping bead was suppressed. The microstructure of overlap area coarsened and its hardness increased due to remelting. As a result of tensile-shear strength test in the overlap area according to applying the wave shape control, it was confirmed that the overlap area applied wave shape control had more excellent yield strength and ductility.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

Development of Automatic Voltage Control Equipment using LabVIEW Software (LabVIEW를 이용한 TIG 용접 자동 전압 제어 장치 개발)

  • Song, Sang-Eun;Jeong, Young Cheol;Cho, Young Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.112-117
    • /
    • 2017
  • The arc, generated by Tungsten Inert Gas(TIG) welding, is stable and provides excellent quality of the weld. Since automation is difficult, a lot of work is performed by hand. In addition, to obtain the uniform weld quality is difficult when using a base metal having a nonuniform welding line, or when welding inside a pipe. Generally, TIG welding power has the characteristic of constant-current. The welding voltage is changed in proportion to the arc length. Hence, the automatic voltage control equipment should be applied at the TIG welding system. The automatic voltage control equipment has been designed using LabVIEW software. It consists of a manufactured voltage divider circuit, and jig for moving the torch. The voltage measurements and driving of the motor were performed through the algorithm implementation in LabVIEW. Welding was conducted while increasing the arc length. In this process, it was confirmed that the automatic voltage control equipment kept the arc length constant.