• Title/Summary/Keyword: Welding speed

Search Result 813, Processing Time 0.031 seconds

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

A Study of Heat Input Distribution on the Surface during Torch Weaving in Gas Metal Arc Welding

  • Kim, Y.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • In weaving welding where a V groove exists, the heat input distribution is an important factor that determines the defectiveness of the bead shape, undercut and over-lap. In this study, the amount of heat input, which is determined by the welding current, voltage, speed and weaving conditions is calculated through mathematical development and numerical methods. Furthermore, the heat input distribution as a two- dimensional heat source was observed when applied to each groove.

  • PDF

Mechanical properties of fine grained steel weldments formed with low heat input (세립강 저입열 용접부의 기계적 성질)

  • 윤중근;박태동;김광수;박영수
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.227-229
    • /
    • 2003
  • Low heat input welding methods have been investigated in order to minimize the HAZ softening of the 600MPa grade fine grained steel weldment. The welding processes of interest were a high speed FCA welding with a multi-torch welding system, laser welding with filler feeding and hybrid laser welding. No HAZ softening was found for all the weldments formed with low heat input less than 10kJ/cm. Tensile strength of the weldments was high enough to satisfy the required value. Impact toughness of the weldments was also good even at -20$^{\circ}C$.

  • PDF

Effects of Welding Perameters on Bead Width and Penetration in Electron Beam Welding (용입과 비이드 폭 에 미치는 전자 비임 용접 변수의 영향)

  • 김숙환;강춘식;윤종원;황선효
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 1984
  • In order to investigate the predominant factors which determine penetration depth and bead width in electron beam welding, bead-on-plate welding was carried out using 7075-T6 Al alloy. The results obtained from the present experiments can be summarized as follows; 1) With increasing accelerating voltage, bead width (B.W) decreases but penetration increases remarkably. 2) Increasing beam current results in increase of bead width and penetration respectively, and decrease of the ratio of penetration increment to beam current increment. 3) With increasing welding speed penetration decreases remarkably, while bead width creases.

  • PDF

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Microstructure Evolution of UFG Steel Weld by Hybrid and Laser Welding (하이브리드 용접과 레이저 용접에 의한 세립강 용접부의 미세조직변화에 관한 연구)

  • Dong, H.W.;Lee, M.Y.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.58-63
    • /
    • 2010
  • A laser beam welding and an electric arc welding were combined, and the positive points of each welding method are drawn such as high speed, low thermal load, deep penetration, and high productivity. The fiber laser-MIG conjugated welding. namely the hybrid welding has been studied mainly for the automation industry of a pipeline welding. In this study, the MIG welding was combined with a fiber laser welding to make up the hybrid welding. The weld shapes, microstructures and mechanical properties for weld zones after the hybrid welding or only fiber laser welding were investigated on the 700 MPa grade Ultra Fine Grained(UFG) high strength steel. The amount of acicular ferrite in weld metals and HAZ(heat affected zone) was observed larger after hybrid welding compared with after only laser welding. The Vickers hardness of the top area of the fusion zone after fiber laser welding was higher compared with after hybrid welding.

A Study on Monitoring for Process Parameters Using Isotherm Radii (등온선 반경을 이용한 공정변수 모니터링에 관한 연구)

  • Kim, Ill-Soo;Chon, Kwang-Suk;Son, Joon-Sik;Seo, Joo-Hwan;Kim, Hak-Hyoung;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

Study on the characteristics of the plasma induced by lap-joint $CO_2$ laser welding of automotive steel sheets (자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 발생되는 플라즈마 특성에 관한 연구)

  • 남기중;박기영;이경돈
    • Laser Solutions
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • In order to investigate the characteristics of the plasma induced by lap-joint CO$_2$ laser welding of automotive steel sheets, the effects of welding speed, shield gas flow rate, gap size, and laser beam defocus to plasma intensity emitted from keyhole have been investigated. The plasma light is measured by fiber and photodiode. Also, the plasma images were captured by the high speed digital camera in 1000frames/sec in order to correlate the plasma light signal with plasma pattern. From the results, it is observed that the difference of the plasma intensity for between the deep penetration and partial penetration exists from 1.2 to 2 times. The plasma light intensity decreased in case of the deep penetration Is observed due to the exhausting of the plasma gas under the sheet. On the other hand, under the conditions of the deep penetration, the plasma intensity is significantly increased by controling the conditions decreasing the penetration depth. It was specially founded that the effect of 0.3mm gap size at partial penetration condition is approximately similar to deep penetration in 0mm gap. It is concluded that the plasma intensity is able to evaluate the penetration depth in lap-joint welding and appears to offer the most straightforward correlation to the welding process.

  • PDF