• Title/Summary/Keyword: Welding condition

Search Result 866, Processing Time 0.03 seconds

Study on Analysis Method for Welding Deformation of curved Block - Specimen test and Verification (곡 블록 용접변형 해석법에 관한 연구 - 시험편 테스트 및 검증)

  • Lee, Myeong-Su;Jang, Gyeong-Bok;Park, Jung-Gu;Yang, Jin-Hyeok;Gang, Seong-Su
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.17-19
    • /
    • 2005
  • To achieve high productivity of assembly hull blocks, it is important to predict welding deformations accurately and to apply these data to the production planning. In the deformation analysis of hull block, simplified methods (elastic analysis) such as inherent method, equivalent loading method and local & global approach are usually used instead of thermal-elastic-plastic analysis because of calculating time and cost. To be much more practical, these simplified methods should consider gravity effect of plate and contact condition between the plate and the positioning jig. In this research, using finite element method, practical predicting method for the welding deformation of the curved hull blocks with considering welding sequence, gravity effect and contact condition is proposed.

  • PDF

Bucking Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.265-272
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear bucking load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

Study on Optimal Welding Conditions for Underframe of Railway Vehicles (철도차량 하부구조의 적정 용접조건에 관한 연구)

  • Jung, Sang-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In this study, MIG welding was performed on extruded 6005A-T6 material, which is used in the base panel of railway vehicles. The material was considered as the experimental base material, and argon shielding gas and ER5356 and ER4043 filler metals were used as the consumable welding materials. Welding coupons were prepared under various welding conditions by using an auto-welding system that various welding conditions applied 2.5Hz and 4.5Hz the pulse frequency of SynchroPuls function of welding machine and 1.0mm and 1.5mm of root face affect the weld penetration of welding joint. The welding current and voltage were also varied for this testing. On the basis of the results obtained, optimum welding conditions are proposed.

Development of Digital Carriage for Continuous/Intermittent Welding (디지털식 연속/단속 용접용 캐리지 개발)

  • 감병오;김동규;김광주;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2002
  • This paper shows the results of the development of a small size of digital type continuous and intermittent welding auto-carriage based on microprocessor (Intel 80196KC) for welding process with long welding line. The developed welding auto-carriage loads welding torch and tracks welding line. It is an automaton largely used for welding process with a lot of long welding lines such as shipbuilding and structure. Most traditional auto-carriages have been developed based on analog circuit for open loop control. So this analog circuit welding auto-carriage cannon control welding speed. Specially welding auto-carriage for intermittent welding condition is so complicated and has the low precision of control performance in welding distance and non-welding distance. The auto-carriage developed in this paper has the following characteristics: It has not only functions of traditional carriage but also functions such as pseudo-welding process of big iron structures, intermittent welding in order to limit heat for welding thin plates, crater treatment of the final step of welding, acceleration at the initial step of welding and deceleration in the final step of welding. The main control board of auto-carriage, power supply system and DC motor drive wee developed and manufactured. The welding speed and the welding distance of the developed auto-carriage are controlled accurately by feedback control using photo-sensor. Hardware and software robust against the heat and noise produced on the welding process are developed.

Features of Residual Stress and Plastic Strain in Titanium/Aluminium Friction Welds (티탄과 알루미늄의 마찰용접에서 발생하는 잔류응력.소성변형)

  • 김유철;박정웅
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.84-89
    • /
    • 2000
  • Friction welding of titanium and aluminium is numerically modeled by the axisymmetric thermal elastic-plastic analysis. In titanium/aluminium friction welding, heat transfers into the titanium substrate to a distance of z=10(mm) on the side of the bondline and into the whole region of the aluminium substrate having the large thermal conductivity. Adjacent to the bondline, $^{\sigma}r\;and\;^{\sigma\theta}$ are tensile in the substrate whose thermal shrinkage is large, and are compressive in the substrate whose thermal shrinkage is small. $\sigma_z$ along the radial direction is large tensile at the periphery of the component. Plastic strain occurs only close to the bondline in the aluminium substrate. In the components of plastic strain, $\varepsilon^p_r\;and\;\varepsilon^p_{\theta}$ have positive values and $\varepsilon^p_r$ has large negative value. However, $\varepsilon^p_r$ is produced not because of the severity of the mechanical restraint condition, but on purpose to satisfy the condition of the volume constant. A plastic work is proposed as a measure to evaluate the mechanical severity. The plastic work is larger in the aluminium substrate than that in the titanium substrate. The mechanical condition is severer in the aluminium substrate.

  • PDF

A Study on Mechanical Shearing Process for Tailored Blank Welding (테일러드블랭크 용접을 위한 전단 공정 연구)

  • 유병길;이경돈
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.66-75
    • /
    • 1999
  • Weld bead quality in tailored blank(TB) is critically affected by edge preparation of sheets. The edge quality of prepared sheets for TB can be classified into straightness and the cross section quality of sheared plane such as a ratio of shear face, shear plane angle, etc. In order to have a good edg quality for butt-welding sheets, precision shearing will be recommended. In this paper, the feasibility of a conventional mechanical shearing as the edge preparation for tailored blanks is studyied. It reveals that fine shearing may not be the unique solution as it is generally accepted. To obtain the good shearing condition with a conventional mechanical shearing, experiments were carried out using Tahuchi method. The major parameters affecting a sheared contour are the clearance between upper blade and lower blade, and shear angle. The optimal shearing condition yields a very good straightness along the entire length of the cut, which gives a butt joint gap less than 10% of the base material thickness. The good cross section of sheared plane is also achieved in the optimal shearing condition such as a ratio of the shear face above 65%, a cross section's shear plane angle above 85%, little burr, which is providing finally good weld beads.

  • PDF