• Title/Summary/Keyword: Welded part

Search Result 297, Processing Time 0.023 seconds

Effect of local small diameter stud connectors on behavior of partially encased composite beams

  • Nguyen, Giang Bergerova;Machacek, Josef
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.251-266
    • /
    • 2016
  • The paper combines two distinct parts. First the behavior of welded headed studs with small diameters of 10 and 13 mm acting as shear connectors (which are not embraced in current standards) is studied. Based on standard push tests the load-slip relationships and strengths are evaluated. While the current standard (Eurocode 4 and AISC) formulas used for such studs give reasonable but too conservative strengths, less conservative and full load-slip rigidities are evaluated and recommended for a subsequent investigation or design. In the second part of the paper the partially encased beams under bending are analyzed. Following former experiments showing rather indistinct role of studs used for shear connection in such beams their role is studied. Numerical model employing ANSYS software is presented and validated using former experimental data. Subsequent parametric studies investigate the longitudinal shear between steel and concrete parts of the beams with respect to friction at the steel and concrete interface and contribution of studs with small diameters required predominantly for assembly stages (concreting). Substantial influence of the friction and effect of concrete confinement was observed with rather less noticeable contribution of the studs. Distribution of the longitudinal shear and its sharing between friction and studs is presented with concluding remarks.

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

A Proton Beam Shaping using an Extreme Aspect Ratio Micro-hole (극대세장비 마이크로 홀을 이용한 양성자 빔 집적 응용)

  • Kim, Jin-Nam;Kwon, Won-Tae;Lee, Seong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • EDM is the manufacturing process that uses the thermal energy to machine electrically conductive part. Despite a lot of research has been conducted for decades, the best aspect ratio of the micro hole using micro-EDM has not been over 30, yet. In the present study, new fabrication scheme was introduced to increase the aspect ratio of micro hole dramatically. Micro holes with less than 10 aspect ratio were aligned and welded together to manufacture a micro hole with extreme aspect ratio. Alignment of the micro hole with over 380 aspect ratio was conducted by the home-made apparatus installed with microscope and laser beam. The micro hole with extreme aspect ratio was used to shape pencil beam from proton beam generated from MC-50 cyclotron. The pencil beam was utilized to machine test specimen whose result was compared with GEANT4 computer simulation. It was shown that the experimental and simulation result were closer as the aspect ratio of the micro hole was bigger.

Investigation of Fatigue Strength and Prediction of Remaining Life in the Butt Welds Containing Penetration Defects (블완전용입 맞대기 용접재의 용입깊이에 따른 피로강도특성 및 잔류수명의 산출)

  • Han, Seung Ho;Han, Jeong Woo;Shin, Byung Chun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.423-435
    • /
    • 1998
  • In this paper fatigue strength reduction of butt weld with penetration defect, which can be seen frequently in the steel bridge, was assessed quantitatively. S-N curves were derived and investigated through the constant amplitude fatigue test of fully or partially penetrated welded specimen made of SWS490 steel. The fracture mechanical method was applied in order to calculate the remaining fatigue life of the partially penetrated butt welds. The fatigue limit of the fully penetrated butt welds was higher than that of category A in AASHTO's fatigue design curves, and the slope of S-N curves with 5.57 was stiffer than that of other result for welded part generally accepted as 3. The fatigue strength of the partially Penetrated butt weld was strongly influenced by the size of lack of penetration, D. It decreased drastically with increasing D from 3.9 to 14.7mm. Fracture behaviour of the partially penetrated butt weld is able to be explained obviously from the beach mark test that a semi-elliptical surface crack with small a/c ratio initiates at a internal weld root and propagates through the weld metal. To estimate the fatigue life of the partially penetrated butt weld with fracture mechanics, stress intensity factors K of 3-dimensional semi-elliptical crack were calculated by appling finite elements method and fracture mechanics parameters such as C and m were derived through the fatigue test of CT-specimen. As a result, the fatigue lives obtained by using the fracture mechanical method agreed well with the experimental results. The results were applied to Sung-Su bridge collapsed due to penetration defects in butt weld of vertical member.

  • PDF

Experimental Performance Evaluation on V-shaped Butt Welding Using GMA Welding Double Wire Reel and Remote Control Torch Welding Technique (GMAW 더블 와이어 릴, 원격제어토치 용접기술을 이용한 V형 맞대기 용접 부의 실험적 성능 평가)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1339-1347
    • /
    • 2015
  • This study discusses a remote control torch system equipped with a GMAW double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel, such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is burned out completely. Such work suspension resulting from frequent moves to adjust the current and voltage as well as to replace the wire and subsequent cooling causes welding defects. This study produced a remote control torch equipped with a double wire reel by simplifying and streamlining the existing GMAW functions to reduce the troubling issue. The remote control torch equipped with a double wire reel and the existing $CO_2$ /MAG welding torch were applied as a V-groove butt in the vertical position using 6mm rolled steel for a SM50A welding structure. After welding, the condition of welded surface beads underwent a visual inspection and radiographic inspection to analyze the welding quality inside the welded part. This study also evaluated the reduction of welding defects, cost saving, the replacing performance against the existing commercial welders, and the effects on possible compatibility.

Experimental Investigation of the Residual Stress on Fatigue Crack Growth of Welded Steel Members (용접(鎔接) 강부재(鋼部材)의 피로균열성장(疲勞龜裂成長)에 대한 잔류응력특성(殘留應力特性)에 관한 연구(硏究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.99-106
    • /
    • 1987
  • Annealing were performed to investigate the behaviors of the residual stress remaining on the member of a steel structure. According to the fatigue test, the welding part has higher fatigue crack growth rate than the base metal part because the hardening of welding part reduce fracture toughness. However, the heat treatment decrease the hardness and increase the resistance to failure. Thus, the fatigue crack growth rate is improved and it reaches the minimum at $650^{\circ}C$. Elber' s equation includes the effect of the crack-close so that this equation provides a lower the fatigue crack growth rate than Paris-Erdogan' s equation, the Elber's curves show no significant difference to indentify the effect of the residual stress. The Pop loading along the crack length increases as the hardness goes higher. The heat treatment not only decrease the hardness, and the fatigue crack growth rate, but increase the absorption energy and fracture toughness on the member of a steel structure. As the result, the heat treatment produces the resistant ability to cracking which can reduce the degree of danger to failure.

  • PDF

Geological Structures and Mineralization in the Yeongam Mineralized Zone, Korea (영암 광화대의 지질구조와 광화작용)

  • Ryoo, Chung-Ryul;Park, Seong-Weon;Lee, Hanyeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The Yeongam mineralized zone is located in the southwestern part of the Korean peninsula, including the Sangeun, Eunjeok and Baramjai mines. This zone is located in the northeastern part of the Mokpo-Haenam-Yeongam volcanic circular structure. The 13 sites of quartz vein with mineralization are developed in the Sangeun-Eunjeok-Baramjai area, within rhyolitic welded tuff, showing N-S or NNW trend with highly dipping to the west. The quartz veins occur as a single vein or a bundle of veins with width of 1-5 cm in each. The existence of faults parallel to the quartz veins indicates that the faulting occurred before and after the development of quartz veins and mineralization. The quartz veins and mineralized zone are displaced by NW-trending sinistral strike-slip faults. The extension of the Sangeun-Eunjeok mineralized belt is traced to the south, following a NNW-trending tectonic line, and the Au-Ag contents are analysed in the 12 sites of quartz veins. Contents of gold and silver are 12.3 g/t and 1,380.0 g/t in Eunjeok mine, 2.7 g/t, 23.5g in Sangeun mine, and <0.1 g/t, 5.7 g/t in Baramjai mine respectively. Therefore, a highly Ag-Au mineralized zone is not developed in the southern part of the studied area.

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

Fatigue Fracture Assessment of Honeycomb Composite Side-Wall Panel Joint for the KTX Tilting Car Body (틸팅차량용 KTX 차체의 하니컴복합재 측벽판 체결부의 피로파괴평가)

  • Jeong, Dal-Woo;Kim, Jung-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The honeycomb composite joint structure designed for application to a tilting KTX railroad car body is subjected to bending loads of a cantilever type. Honeycomb sandwich composite panel-joint attached in the real tilting car body was fabricated and sectioned as several beam-joint specimens for the bending test. The fracture behaviors of these specimens under static loads were different from those under cyclic loads. Static bending loads caused shear deformation and fracture in the honeycomb core region, while fatigue cyclic bend loading caused delamination along the interface between the composite skin and the honeycomb core, and/or caused a fracture in the welded part jointed with the steel under-frame. These fracture behaviors could occur in other industrial honeycomb composite joints with similar sub-structures, and be used for improving design parameters of a honeycomb composite joint structure.

The Porosity Control Technology of Lap Joint Welding Using Continuous Wave Nd:YAG Laser of the Low Carbon Steel SS41 (저탄소강 SS41 연속파형 Nd:YAG 레이저 겹치기 용접의 기공제어 기술)

  • Lee, Ka Ram;Hwang, Chan Youn;Yang, Yun Seok;Park, Eun Kyeong;Yoo, Young Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.665-672
    • /
    • 2013
  • With the development of advanced processing technology, laser processing systems, which require high-quality precision processing, have attracted considerable attention. Although laser equipment is expensive, it enables quick processing and less deformation of materials. This technology is often applied to secondary batteries, which has thus farinvolved the use of argon tungsten inert gas (TIG) welding. However, the welding characteristics of argon TIG welding are not yet good, and a laser is used for welding to address this problem. In this study, lap-joint welding was conducted, and the desired welding characteristics were obtained when the laser power was 1800W and the laser beam travel speed was 1.8 m/min. Lap-joint welding was conducted on Ni-coated SS41. Two cases were compared. No pores were observed in the Ni-coated SS41 lap-joint welding part, and cracks appeared from the lap-joints. Moreover, the pole rod and tap were welded together in a T-joint form to improve the output of the secondary battery. T-joint laser welding showed better welding characteristics than TIG welding.