• Title/Summary/Keyword: Welded Joint Design

Search Result 157, Processing Time 0.021 seconds

A Study on Fatigue Design of STS301L Fillet Welded Joint (STS 301L 필렛 용접이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.561-565
    • /
    • 2010
  • Stainless steel sheets are widely used as structural materials for the manufacture of railroad cars and commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For the fatigue design of gas welded joints such as fillet joints and plug joints, it is necessary to obtain information on the stress distribution at the weldment and the fatigue strength of the gas welded joints. Moreover the influence of the geometrical parameters corresponding to the gas welded joints on the stress distribution and fatigue strength must be evaluated. ${\Delta}P-N_f$ curves were obtained from the data recorded in fatigue tests. Using these results, the ${\Delta}P-N_f$ curves were rearranged according the relation between $\Delta\sigma-N_f$ and the maximum stress at the edge of the fillet welded joint.

Numerical analysis of the mechanical behavior of welded I beam-to-RHS column connections

  • Rosa, Rosicley J.R.;Neto, Juliano G.R.
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Considering the increasing use of tubular profiles in civil construction, this paper highlights the study on the behavior of welded connections between square hollow section column and I-beam, with emphasis on the assessment of the joint stiffness. Firstly, a theoretical analysis of the welded joints has been done focusing on prescriptions of the technical literature for the types of geometries mentioned. Then, a numerical analysis of the proposed joints were performed by the finite element method (FEM) with the software ANSYS 16.0. In this study, two models were evaluated for different parameters, such as the thickness of the cross section of the column and the sizes of cross section of the beams. The first model describes a connection in which one beam is connected to the column in a unique bending plane, while the second model describes a connection of two beams to the column in two bending planes. From the numerical results, the bending moment-rotation ($M-{\varphi}$) curve was plotted in order to determine the resistant bending moment and classify each connection according to its rotational capacity. Furthermore, an equation was established with the aim of estimating the rotational stiffness of welded I beam-to-RHS column connections, which can be used during the structure design. The results show that most of the connections are semi-rigid, highlighting the importance of considering the stiffness of the connections in the structure design.

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint

  • Guo, Qi;Xing, Ying;Lei, Honggang;Jiao, Jingfeng;Chen, Qingwei
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • The grid structures with welded hollow spherical joint (WHSJ) have gained increasing popularity for use in industrial buildings with suspended cranes, and usually welded with steel tube (ST). The fatigue performance of steel tube-welded hollow spherical joint (ST-WHSJ) is however not yet well characterized, and there is little research on fatigue life prediction methods of ST-WHSJ. In this study, based on previous fatigue tests, three series of specimen fatigue data with different design parameters and stress ratios were compared, and two fatigue failure modes were revealed: failure at the weld toe of the ST and the WHSJ respectively. Then, S-N curves of nominal stress were uniformed. Furthermore, a finite element model (FEM) was validated by static test, and was introduced to assess fatigue behavior with the hot spot stress method (HSSM) and the effective notch stress method (ENSM). Both methods could provide conservative predictions, and these two methods had similar results. However, ENSM, especially when using von Mises stress, had a better fit for the series with a non- positive stress ratio. After including the welding residual stress and mean stress, analyses with the local stress method (LSM) and the critical distance method (CDM, including point method and line method) were carried out. It could be seen that the point method of CDM led to more accurate predictions than LSM, and was recommended for series with positive stress ratios.

Fatigue Damage Behavior in TIG Welded Joint of F82H Steel under Low Cycle Fatigue Loading (저주기 피로부하에서 F82H 강 TIG 용접 접합부의 피로손상거동)

  • Kim, Dong-Hyun;Park, Ki-Won
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • Reduced activation ferritic/martensitic steels are recognized as the primary candidate structural materials for fusion blanket systems. Welding is an inevitable for breeding blanket for pressure tightness and radioisotope confinement. Especially, TIG welding was chosen for sealing because it has the largest gap allowance compared to the other welding methods, and its properties are controllable by feed wire and welding conditions. In this study, the low cycle fatigue test using two-type gage such as extensometer and strain gage was applied to the TIG welded joint of F82H steel, for evaluating fatigue damage accumulation behavior of the HAZs. As the result, the over-tempered HAZ have shown a higher fatigue damage accumulation compared with other materials at all the testing conditions.

Development of magnesium tube manufacturing technology with strip cast and warm rolled AZ31 sheet. (마그네슘 압연판재를 이용한 용접 튜브 제조 기술 개발)

  • Lee, Mok-Young;Han, Soo-Sik;Chang, Woong-Seong;Lee, Heung-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.96-96
    • /
    • 2010
  • Magnesium alloy is being used for structural material since it has high specific strength. Tubular shape was effective way for enhanced structural design. To manufacture the tube, it is necessary to weld the butted joint of both tubular formed sides. But the magnesium alloy was hardly welded with conventional welding processes. The laser welding was effective way to joint magnesium alloys because it had high weld strength and productivity compare with other welding processes. In this study, magnesium alloy sheets was formed at elevated temperature to tubular shape and welded with laser. Consequently, the magnesium alloy tube was making successful with warm forming and laser welding and bicycle frame was making with it.

  • PDF

MEAN LOAD EFFECT ON FATIGUE OF WELDED JOINTS USING STRUCTURAL STRESS AND FRACTURE MECHANICS APPROACH

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.277-284
    • /
    • 2006
  • In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B&PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ${\Delta}K$ characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints.

Sensitivity Appraisal for Lamellar Tearing of Box-Column of Ultra Thick Plate (극후판 Box-Column의 Lamellar 균열 감수성 평가)

  • 노찬승;박창수;김흥주;방한서;이창우
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.31-36
    • /
    • 2003
  • In case of this thick rolling-steel for a multistory building, a large oil-drilling structure, a large vessel, a bridge and so on, Lamella Tearing around the welded joint zone is the most serious problems. In order to prevent Lamella Tearing, not only is choice of material important, but also the comprehensive investigation for the structural design and the construction. The Lamella Tearing that is a staircase-shape occurs due to the contraction stress to the thickness direction of the plate and has the character that the cracks progress along the elongated inclusion by rolling. In general, because cracks occur at the heat affected zone and around HAZ, it is necessary to establish the safety and the confidence of the welded structure to restrain the welding defect such as Lamella Tearing. The mechanical approaches are the easier and more economical than the approaches of the material and the construction method. In addition, the appropriate welding profile and the optimum welding condition contribute toward the improvement of the productivity and influence on the standardization of the manufacturing technology.

A Study on Accelerated Life Prediction Automation of Gas Welded Joint of STS301L (Plug and Ring Type) (STS301L 가스용접이음재의 가속수명예측 자동화에 관한 연구 (Plug and Ring Type))

  • Baek, Seung-Yeb;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistical reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.