• 제목/요약/키워드: Welded Joint

검색결과 694건 처리시간 0.03초

응력집중을 고려한 십자형 필렛 용접재의 피로강도 평가 (Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Considering Stress Concentration at Weld Toe)

  • 김대진;석창성;구재민;박재실;서정원;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.222-227
    • /
    • 2004
  • Under cyclic loading, the fatigue failures of welded joints occur at weld toes which induce stress concentration by weld shape. So we need to obtain the peak stress and the S-N curve to assess the fatigue strength of welded joints. However the measurement of peak stress is of high uncertainty and low reproducibility, so we use nominal stress instead in fatigue tests of welded joints. In this study, fatigue tests to obtain S-N curves and FE analyses to obtain stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curves to that based on peak stress using the hot-spot stress concept. From the analyses of the S-N curves obtained, we have concluded that there is a need to develop a new method to evaluate the fatigue life.

  • PDF

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

박판 $CO_2$레이져 빔 용접과 소재접합일체성형에 관한 연구 (A Study on the CO $_2$Laser Beam Welding of Thin Steel Sheets and Tailor Welded Blank)

  • 이희석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.159-164
    • /
    • 1996
  • For the purpose of establishing laser welding condition(laser power, welding speed and beam focus) and of evaluating tailor welded blank for three kinds of thin steel sheets of SPCC, SK5M and SUS304 using in the thin plate structure such as automobile, train and so on. Their $CO_2$ laser weldability were primarily tested under various welding condition. SPCC and SUS304 thin sheets showed good weldability under some welding condition. But, high carbon steel sheet SK5M needs heat treatment after welding to obtain higher tensile strength and ductility of the welded joint. And next, laser welding condition. Butt-welded specimens were not nearly broken at weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor welded blank were SPCC+SPCC=22~25mm, SUS304+SUS304=25~43mm and SK5M+SK5M=13~17mm.

  • PDF

Al/Fe 이종금속 접합부의 부식특성 (Corrosion Assessment of Al/Fe Dissimilar Metal Joint)

  • 강민정;김철희;김준기;김동철;김종훈
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

Behaviour of welded beam-to-column joints subjected to the static load

  • Skejic, Davor;Dujmovic, Darko;Androic, Boris
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.17-35
    • /
    • 2008
  • Neglecting the real joint behaviour in frame analysis may result in unrealistic predictions of the response and reliability of steel frames. The reliability of the prediction of main joint properties according to the component method (Eurocode 3-Part 1.8) still remains open to further investigation. The first step toward the solution is to compare the theoretical expressions given in EN 1993-1-8 and the experimental results. With that goal in mind six nominally the same, but really different specimens of welded beam-to-column joints subjected to static load were tested. The specimens present a combination of nominally identical structural elements produced in different European mills. This paper provides these tests, as well as their detailed evaulation and interpretation. All three joint structural properties (rotational stiffness, moment resistance and rotation capacity) have been considered. Four models for determining the plastic resistance out of experimental Mj-${\phi}$ curves have been applied. The results that have been discussed in detail, point to the fact that EN 1993-1-8 underestimates the real structural properties of the tested type of joint, as well as to the conclusion that detailed research of this problem needs to be conducted using the probabilistic reliability methods.

크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전- (Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack-)

  • 임성우;김진호;장인화
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.237-248
    • /
    • 1997
  • 크레인 주행거더에서 빈번히 발생되는3 종류의 균열을 재현하기 위해서 거더 길이 640 mm, 높이 600 mm, 폭 300 mm의 시험체 2기를 제작하여 피로실험을 수행하였다. 시험체의 균열은 재하점 부근과 가세트 단부 및 하부플랜지와 웨브의 모살용접부에서 발생하였다. 재하점 근방의 균열은 수직보강재가 위치한 상부플랜지와 웨브 사이의 모살용접부에서 발생해서 웨브의 대각선 방향으로 진전하였다. 또한 하부플랜지 종비드에서 발생된 균열은 주행거더방향에 수직으로 성장하였다. 크레인 주행거더의 각 부위의 피로등급은 JSSC 피로설계지침의 피로등급과 비교해 보면, 재하점 근방의 모살용접부는 E 등급, 가세트 단부는 G 또는 H 등급, 하부플랜지 종비드 부위는 D 등급 정도로 나타났다. 가세트 단부와 종비드 부위는 피로설계지침과 잘 일치하고 있음을 알 수 있다.

  • PDF

선외기 샤프트용 재료의 마찰용접에 관한 연구 (Study on Friction Welding of SUS431 and SCM21 for External Shaft of Ship)

  • 오세규;이종환;배명주;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.38-48
    • /
    • 1993
  • A study on friction welding of stainless steel bar(SUS431) to chrome molybdenum steel bar(SCM21) was accomplished experimentally through analysis for relations among friction welding conditions, tension test, hardness test, microstructure test and acoustic emission test. The results obtained are summarized as follows ; 1. Through friction welding of SUS431 bar to SCM21 bar, the optimum welding condition by considering on strength and toughness was found to be the range of heating time of 3-5 sec when the number of rotating speed of 2000rpm, heating pressure of 10kg/$mm^2$, and upsetting time of 4 sec. 2. Quantitative ralationship was identified between heating time($T_1$, sec) and tensile strength (${\sigma},\;kgf/mm^2$) of the friction welded joint and the relation equation is $\sigma$=52.62$T_1{^{0.06}}$. 3. Through AE test, quantitative relationship was confirmed between heating time($T_1$, sec) and total AE(N, counts) during welding, and the relation is computed as follows ; N=30413.6$e^{0.06T1}$. 4. It was confirmed that the quantitative ralationship exists between the tensile strength of the welded joints and AE cumulative counts. And the relation is computed as the following ; ${\sigma}$=16.37(ln N)- 116.4. 5. When ONZ=36500-41500 counts by $OT_1Z$=3~5sec, it was identified by experiment that the range of welded joint tensile strength is 55.6-57.7kgf/$mm^2$/ whose joint efficiency is more than 100%, and it was experimentally confirmed that the real-time nondestructive quality(strength) evaluation for the friction welded joints could be possible by acoustic emission technique.

  • PDF

Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint

  • Guo, Qi;Xing, Ying;Lei, Honggang;Jiao, Jingfeng;Chen, Qingwei
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.75-86
    • /
    • 2020
  • The grid structures with welded hollow spherical joint (WHSJ) have gained increasing popularity for use in industrial buildings with suspended cranes, and usually welded with steel tube (ST). The fatigue performance of steel tube-welded hollow spherical joint (ST-WHSJ) is however not yet well characterized, and there is little research on fatigue life prediction methods of ST-WHSJ. In this study, based on previous fatigue tests, three series of specimen fatigue data with different design parameters and stress ratios were compared, and two fatigue failure modes were revealed: failure at the weld toe of the ST and the WHSJ respectively. Then, S-N curves of nominal stress were uniformed. Furthermore, a finite element model (FEM) was validated by static test, and was introduced to assess fatigue behavior with the hot spot stress method (HSSM) and the effective notch stress method (ENSM). Both methods could provide conservative predictions, and these two methods had similar results. However, ENSM, especially when using von Mises stress, had a better fit for the series with a non- positive stress ratio. After including the welding residual stress and mean stress, analyses with the local stress method (LSM) and the critical distance method (CDM, including point method and line method) were carried out. It could be seen that the point method of CDM led to more accurate predictions than LSM, and was recommended for series with positive stress ratios.

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF

A STUDY ON THE MECHANICAL CHARACTERISTICS OF RESISTANCE MULTI-SPOT WELDED JOINTS WITH PITCH LENGTH

  • Bang, Han-Sur;Bang, Hee-Seon;Joo, Sung-Min;Chang, Woong-Seong;Lee, Chang-Woo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.809-815
    • /
    • 2002
  • For clarifying the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not axi-symmetric, unlike the case of single-spot welded joint, the solution domain for simulation should be three-dimensional. Therefore, in this paper, from the results analyzed using the developed the three dimensional unstationary heat conduction and thermal elasto-plastic programs by an iso-parametric finite element method, mechanical characteristics and their production mechanism on single- and multispot welded joints were clarified. Moreover, effects of pitch length on temperature, welding residual stresses and plastic strain of multi-spot welded joints were evaluated, indicating that a pitch of 30mm was advantageous compared to a pitch of 15mm.

  • PDF