• Title/Summary/Keyword: Welded Beam

Search Result 312, Processing Time 0.022 seconds

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.

An Experimental Study on Simple Tension Connections for Square CFT Column to Beam Using Internal Plate with Holes (내부유공판을 사용한 각형 CFT 기둥-보 단순인장 접합부의 실험적 연구)

  • Lee, Seong Hui;Jung, Hun Mo;Yang, Il Seung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.575-583
    • /
    • 2009
  • As the height of buildings rises, new structural systems are being applied other than theexisting S, RC, and SRC to decrease the weight of buildings and to make their construction more efficient, CFT structureshad been applied in many building construction projects due to their superior structural performance and construction efficiency. CFT structures need a diaphragm to harmoniously transmit the beam flange load to the column and the opponent beam in connections. Especially, on the right and left sides of the column other beams are connected, The establishment of a diaphragm for the lower part flange load delivery of the beam and guarantee for concrete filing capacity difficulty have (What does this mean?). In this paper, connection details are proposed in the form of a welded vertical plate with a circular hole on the CFT column's interior to harmoniously transmit the lower-part beam flange load to the column and the opponent beam. Thesediaphragm details use the concrete anchor effect in the beam flange load delivery, with the concrete-filled CFT column interior piercing the hole of the perforated plate, and a perforated board is established vertically to improve the concrete filling capacity. To analyze the structural performance of the proposed connection details, five simple tension specimens were made with the following parameters: with our without vertical and horizontal perforated plates, shear hole number, concrete filled or not, thickness of the perforated plate, etc. Then experimental tests were performed on these specimens.

Cyclic Seismic Testing of Full-Scale Column-Tree Type Steel Moment Connections (반복재하 실물대 실험에 의한 컬럼-트리(Column-Tree) 형식 철골 모멘트 접합부의 내진거동 연구)

  • Lee, Cheol Ho;Park, Jong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.629-639
    • /
    • 1998
  • This paper summarizes the results of full-scale cyclic seismic performance tests on three column-tree type steel moment connections. Each test specimen consisted of a $H-600{\times}200$ beam and a $H-400{\times}400$ column of SS41 (SS400). Key parameter included was column PZ (panel zone) strength relative to beam strength. The seismic performance of specimen with stronger PZ tended to be inferior. Total plastic rotations available in the specimens ranged from 1.8 to 3.0 (% rad). The limited test results in this study seem to support the speculation that permitting PZ yielding shall be more beneficial to enhancing total plastic rotation capacity of the moment connection. Beam flange fracture across the heat affected zone and divot-type pullout of the column flange were observed in the tests. A conceptual mechanical model consistent with observed test results was also sought.

  • PDF

Push-out Test on Welded Angle Shear Connectors used in Composite Beams (합성보에 적용된 앵글 전단연결재의 Push-out 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Dong Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2014
  • Steel-concrete composite beam has been used for a considerable time in building construction. An essential component of a composite beam is the shear connection between the steel section and the concrete slabs, which is provided by mechanical shear connectors. A variety of shapes and devices have been in use as shear connectors. This study summarizes the results of an experimental investigation involving the testing of push-out specimens with angle shear connectors. All of 22 push-out specimens were designed to study the effect of a number of parameters on the shear capacity of angle shear connectors such as the height of the angle connector, the length of welding, and the pitch of angles. Based on the test results, a design equation was developed for predicting the shear strength of angle shear connectors.

Analytical Study on the Development of High-Performance Orthotropic Steel Deck considered the Fatigue Behaviors of Structural Details (구조 상세부의 피로거동을 고려한 고성능 강바닥판 개발에 관한 해석적 연구)

  • Kyung, Kab Soo;Shin, Dong Ho;Kim, Kyo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Various fatigue damages have been reported in orthotropic steel deck structures put upon girders. These damages are caused by complex behaviors of the deck, which is directly subjected to vehicle loads. To estimate the causes of fatigue cracks at the welded connected parts of the trough rib and the flor beam, and the trough rib and the deck plate, in orthotropic steel deck structures, FE analyses were first, performed in this study. Parameter studies were carried out to suggest effective structural details that consider fatigue, in which the main parameters are the thickness of the deck plate, the shape of the connection of the trough rib and the flor beam such as the slit form, and the welding length. This study suggests that the effective structural details improved the fatigue strength and discusses.

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters - (브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.

Structural Performance Evaluation of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column Connection Details (내진 각형강관 기둥-H형강 보 접합상세의 구조성능평가)

  • Jang, Bo-Ra;Shim, Hyun-Ju;Kim, Yong-Ick;Chung, Jin-An;Oh, Young-Suk;Kim, Sang-Seup;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The objective of this paper is to examine the structural performance of steel moment-resisting frames on the various connection details of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column connections. Although compared to an H-shaped steel tube, a rectangular steel tube has many advantages and is more efficient, its application is limited due to the lack of experience in using it and the connection details. Existing steel moment connections using the rectangular steel tube are mainly used through plate diaphragms. The processing of construction of the rectangular steel tube is so complicated that it is hard to apply it in the field. In this study, the structural performance and the earthquake capacity of the connection details that do not cut the rectangular steel tube column were investigated. A comparative analysis of the strength, rigidity, and energy absorption capacity of the welded connection details using an end-plate and a haunch was also performed.

Study on Elasto-Plastic Behavior of Column to Beam Connection with 600MPa High Performance Steel(SM 570 TMC) (기둥-보 용접접합부의 보단부 스캘럽형상과 탄소성 거동에 관한 실험적 연구 - 600MPa(SM570TMC)의 경우 -)

  • Kim, Jong Rak;Kim, Seung Bae;Kwon, June Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.691-700
    • /
    • 2008
  • Contemporary architectural structures have diverse and complex forms. Such structural variety demands requisite performance from the connections in the steel structure so that the latter could resist a horizontal force, such as an earthquake. The connections are the all-important components that create the discontinuous form and that support stress concentration, determining the stiffness and toughness of the entire steel frame. In this study, a real-scale column-to-beam connection was constructed in the 600MPa-grade high-strength and high-performance steel, to test its behavior. Its material and welding characteristics were examined in this study, and its structural performance was analyzed by conducting seismic-resistance tests on the full-scale, cross-shaped column-to-beam welded connections with non-scallop, ordinary-scallop, and reinforced-scallop details. The weld ability of the high-strength, high-performance steel was also evaluated, and data regarding the seismic design for practical application were provided.