• Title/Summary/Keyword: Welded Beam

Search Result 312, Processing Time 0.021 seconds

A Study on the Characteristics of High Tensile Strength Steel (SM570) Plates in Beam-Column Members (고장력(SM570) 강재의 기둥재 특성에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • As building structures become higher and longer-spanned these days, welding fabrication may become more and more difficult as the thickness of the plate increases. The use of high-strength steel is one of the solutions to reduce membrane thickness. Using high-strength steel would reduce the size of the column, which is under high axial load. Performance tests of high-strength box-type and H-shaped welded columns subjected to the combined bending and axial compressive load were carried out with variable axial load and slenderness ratio. Beam-column test results showed that the ultimate strength satisfied both ASD and LRFD codes

The Weld Strength and Design Tables for the Unstiffened Seated Connections (비보강받침접합의 용접강도와 설계도표)

  • Choi, Sun-Kyu;Yoo, Jung-Han;Lee, Kang-Min;Park, Jai-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.199-206
    • /
    • 2012
  • Unstiffened seated connections (USC) ensure easy installation and safety during erection, thereby making the process more economical. USCs consist of a seat angle for carrying the beam's reactions and a top angle to provide beam stability. These angles are bolted or welded to the beam and supporting member. This paper sought to propose a design table for the weld strength of such connections obtained from the elastic vector method (EVM) and the instantaneous center-of-rotation method (ICM) in terms of calculating the eccentricity. Also, the proposed design table is compared with both AISC and KBC specifications.

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz;Kravanja, Stojan;Klansek, Uros
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1163-1192
    • /
    • 2016
  • This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.

A Study on the Strength and Stiffness of the Concrete Filled Circular Tube Beam to Column Connections under the Gravity Loads (연직하중을 받는 콘크리트충전 원형강관기둥의 접합부 내력에 관한 연구)

  • Lee, Myung Woo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.611-623
    • /
    • 1997
  • This paper provides the results of an experimental and analytical study performed on the beam to Concrete Filled Circular Steel Column connections with the external stiffener rings under the gravity loads. Specimens are modeled as a 1/4 scale of the beam-columns as gravity loads are applied to a multi-story frame. Important parameters in this study are the width of the external rings, the diameter-thickness ratios of column and whether or not the external rings are welded to the circular column. A total of 20 specimens are tested to clarify the structural behavior of the CFT column connections with the external stiffener rings. The test results are summarized for the yield and maximum strength and stiffness. The existing design equations for the allowable and yield load capacities are referred to verify the structural characteristics for the connections.

  • PDF

Microstructure of Electron Beam Welded Cu / STS 304 Dissimilar Materials (전자빔 용접된 Cu / STS 304강의 미세조직에 관한 연구)

  • Park, Kyoung-Tae;Kim, In-Ho;Baek, Jun-Ho;Chun, Byung-Sun
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • According to the research report for the recent a few years, the dissimilar welding of Cu and STS 304 alloy have been presented that a weldability is very poor. This article present a study on Lap joint by Electron beam welding dissimilar materials. The weld metals was constituted between pure copper and STS 304 steel. The experiment was performed with 125mA welding current, 520mA focusing current. The Vacuum condition of chamber is 5${\times}$10-5torr and welding speed is 300mm/min. Showing the bead shape of weld metal, the thickness of the stainless 304 using as the protect materials is 3mm and the thickness of a copper is 15mm. The analysis about the microstructure were carried out in which it was observed with SEM. The results showed that complex heterogeneous fusion zone microstructure characterized both by rapid cooling and mixing of the molten metal, however the liquation crack was formated in the fusion line.

Experimental investigation of inelastic buckling of built-up steel columns

  • Hawileh, Rami A.;Abed, Farid;Abu-Obeidah, Adi S.;Abdalla, Jamal A.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.295-308
    • /
    • 2012
  • This paper experimentally investigated the buckling capacity of built-up steel columns mainly, Cruciform Columns (CC) and Side-to-Side (SS) columns fabricated from two Universal Beam (UB) sections. A series of nine experimental tests comprised of three UB sections, three CC sections and three SS sections with different lengths were tested to failure to measure the ultimate axial capacity of each column section. The lengths used for each category of columns were 1.8, 2.0, and 2.2 m with slenderness ratios ranging from 39-105. The measured buckling loads of the tested specimens were compared with the predicted ultimate axial capacity using Eurocode 3, AISC LRFD, and BS 5959-1. It was observed that the failure modes of the specimens included flexural buckling, local buckling and flexural-torsional buckling. The results showed that the ultimate axial capacity of the tested cruciform and side-by-side columns were higher than the code predicted design values by up to 20%, with AISC LRFD design values being the least conservative and the Eurocode 3 design values being the most conservative. This study has concluded that cruciform column and side-to-side welded flange columns using universal beam sections are efficient built-up sections that have larger ultimate axial load capacity, larger stiffness with saving in the weight of steel used compared to its equivalent universal beam counterpart.

Development of Alloy 718 Nozzle for Ramjet Propulsion Component (Ramjet 고속 추진체용 Alloy 718 합금 노즐 단조품 개발)

  • Park, Nho-Kwang;Kim, Jeoung-Han;Kim, Nam-Yong;Lee, Chae-Hoon;Yeom, Jong-Taek;Hong, Jae-Keun;Baek, Dong-Kyu;Choi, Sung-Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.76-82
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot forging and electron beam welding process. In this process, 718 billets produced in domestic company were used and evaluated. Before performing industrial scale hot forging, small size hot compression tests were carried out under various process conditions and then microstructural evaluations were analyzed. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle components were heat treated and their microstructure and mechanical properties were investigated.

Seismic Tests of Steel Beam-to-column Moment Connections with Inclined End-plate Beam Splice (경사단부강판 보 이음을 갖는 강재 보-기둥 모멘트접합부의 내진실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Park, Choul Soo;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.181-192
    • /
    • 2017
  • A beam splice method using inclined end-plates and high-strength tension bolts was developed. The end-plates welded to a bracket and a spliced beam are connected each other by using the tension bolts. In the present study, six exterior beam-to-column moment connections were tested under cyclic loading. Test parameters were the end-plate details and bolt arrangements. All specimens were designed so that moment resistances of the end-plates and bolts were greater than the required moment at the beam splice, in accordance with the design methods of AISC Design Guide 4. Test results showed that in the beam splices with the extended end-plates, the beam moment successfully transferred to the bracket, without any defeats such as excessive prying action of the end plates and brittle failure at the end plate-to-beam flange weld joints. However, the deformation capacities of the overall beam-to-column connections were limited due to the brittle failure of the beam-to-column flange weld joints. From the test results, recommendations for seismic design and detailing of the beam-to-column moment connection with inclined end-plate beam splice were given.

The Fatigue Behavior of Tailored Welded Blank Sheet Metal by Laser Beam (레이저를 이용한 Tailored Blank 용접 판재의 피로거동)

  • 오택열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.48-55
    • /
    • 2000
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimens was joined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm) .As a base test, mechanical properties around weld zone were examined . The results indicated that there were no significant decreases in mechanical properties , but hardness around weld bead was 2.3 times greater than base material . The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimens and base metal was different, and it was increased by 25% when pres-strain was applied. The crack propagation rate was noticeably decreased around weld line and rapidly increased as it passed through weld line. Reviewing the shape of the crack propagation , crack width around weld line was around the weld zone due to retardation of crack growth , but is became narrow passing weld line due to decreased toughness.

  • PDF

Effect of B Contents on Hardness Characteristic of Disk Laser Beam Welded CP Steels (CP강의 디스크레이저 용접부의 경도특성에 미치는 B 함유량의 영향)

  • Park, Tae-Jun;Yu, Jung-Woo;Kang, Jun-Il;Han, Tae-Kyo;Chin, Kwang-Keun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • CP steel was developed to reduce the weight and increase the strength of car body. When it was welded using state-of-the-art disk laser welding, the effected of boron on the microstructure and hardness were investigated. Welding power was fixed at 3.5kW and welding speeds were 4,8 and 12m/min. Full penetration occurred in welding speed of 12m/min and weld bead was almost unchanged with boron contents. But the welding speed increased, the upper and lower bead were narrowed. In a welding speed of more than 8m/min, underfill defects were formed on the bead bottom. The hardness of weld zone was somewhat fluctuation in fusion zone and HAZ showed the highest hardness values. The hardness of each region showed little change with the boron contents, and softening phenomenon occurred in the HAZ near the base metal regardless of the boron contents.