• Title/Summary/Keyword: Welded

Search Result 2,720, Processing Time 0.028 seconds

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

Evaluation of Scc Susceptibility of Welded HAZ in Structual Steel(II) -Frcature Behavior in Cathodic Protection- (강 용접부의 응력부식크랙 감수성 평가에 관한 연구 II -음극방식에서의 파괴거동-)

  • 임재규;조정운;나의균
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.61-74
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environment has been attributed to stress corrosion cracking(SCC) which is resulting from the combined effects of corrosive environments and static tensile stress. Cathodic protection is an electrochemical method of corrosion control that is widely used in marine environment and primarily on carbon steel. A number of criteria are used to determine whether or not a structure is cathodically protected. In practice, -0.8V versus Ag/AgCl is the most commonly used for marine structures. This paper showed the combined effects of cathodic potential and slow, monotonic straining on the tensile ductility and fracture morphology of parents and friction welded joints for SM45C, SCM440 and SM20C steels in syntheic sea water(S.S.W.,pH:8.2). For the parent materials in cathodic potentials, the higher tensile strength is, the more susceptible SCC is. And the welded HAZ is more susceptible than the parent materials.

  • PDF

Microstructure and CTOD (crack tip opening displacement) of Deposit Weld Metal in 30 mm Thick Plate

  • Lee Hae-Woo;Kim Hyok-Ju;Park Jeong-Ung;Kang Chang-Yong;Sung Jang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.642-648
    • /
    • 2004
  • The microstructure and crack tip opening displacement (CTOD) of deposit weld metal were investigated for a 30 mm- thick plate welded with flux cored arc welding (FCAW) and submerged arc welding (SAW) processes. The CTOD test was carried out both as welded condition and as stress-relieved specimen by local compression. The crack growth rates in FCAW were faster than those in a SAW, and the acicular ferrite content by the SAW process was increased relatively more than that by the FCAW process. The fatigue crack growth rate in a welded specimen was faster than that in locally compressed specimen. The CTOD value of locally compressed specimens was lower than that of as welded specimen. Furthermore, the CTOD value tested with the SAW process was higher than that tested with the FCAW process.

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.

Fatigue Characteristics on Welded Joint of Gear Box-Shank in Vibro Ripper for Rock Crash (암반 파쇄용 진동리퍼 기어박스-생크 용접부의 피로특성)

  • Oh, K.K.;Kim, Jaehoon;Kim, Y.W.;Park, J.Y.;Yang, G.S.;Park, J.W.;Kim, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.28-33
    • /
    • 2014
  • Vibro ripper worked by high frequency vibration is developed to do rock fragmentation and work of ripper is the different concept with other existing breakers. The gear box-shank welded joint of vibro ripper is very important part to deliver vibromotive force to tooth, so this part should endure high frequency vibration environments. The purposes of this study are to choose the optimal welding conditions for fatigue strength. The conditions were made using three kind of shank materials and two kind of filler metals. Shank materials are Hadox-hituf, Posten80 and AR400, and filler metals are CSF-71T and CSF-81T. The fatigue test was conducted each condition. Fracture surface was observed to estimate fracture characteristics of welded joint using SEM.

Fatigue Crack Propagation Behaviors on Tensile and Compression Residual Stresses in Weld Zone (용접부의 인장 및 압축잔류응력에 관한 피로균열 전파거동)

  • 이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.13-21
    • /
    • 1994
  • Effects of tensile and compression residual stresses in the welded SS41 and A17075-76 on fatigue crack propagation behavior are investigated when a crack propagates from residual stresses region. We propose the fatigue crack growth equation on tensile and compression residual stresses in welded metal. The results obtained in this experimental study are summarized as follows . 1 ) A fatigue crack growth equation which applied fatigue fracture behavior of the welded metal is proposed. (equation omitted) where, $\alpha$, $\beta$, ${\gamma}$ and $\delta$ are constants, and R$_{eff}$ is effective stress ratio [R$_{eff}$=(Kmin+Kres)/(Kmax+Kres)], Kcf is critical fatigue stress intensity factor. The constants are obtained from nonlinear least square method. The relation between crack length and number of cycles obtained by integrating the fatigue crack growth rate equation is in agreement with the experimental data. 2) The experimental results confirmed that the cause of crack extension and retardation by residual stresses has relation to the phenomenon of crack closure. 3) The relaxing trend of residual stresses by the crack propagation was greater In case of compressive residual stress than that of tensile residual stress in the welded metal.tal.

  • PDF

An Experimental Study on the Inner Crack Growth of Welded Connections of Steel Structures (강구조용접연결부(鋼構造鎔接連結部)의 내부구열성장(內部龜裂成長)에 관한 실험적(實驗的) 연구(硏究))

  • Min, Chang Dong;Kim, Ki Du;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.121-131
    • /
    • 1985
  • The characteristic of fatigue crack growth in the homogeneous or the soft welded connections used SWS-53 steel and HT-80 steel as base metals is examined by fractographic analysis. As a result of this analysis, the fact that the characteristic of fatigue crack growth which is observed and measured at the surface has wide application to engineering practice is verified. Also, the fact that the welded parts of HT-80 steel have much danger of brittle fracture is prooved. Considering that the striations are observed at the welded parts of SWS-58 steel and the spacing of striations has higher numerical value than da/dN, we can prove that inner fatigue crack growth may develop in zig-zag directions.

  • PDF

An Experimental Study on the Axial Impact Collapse Characteristics of Spot Welded Section Members

  • Cha, Cheon-Seok;Beak, Kyung-yun;Kim, Young-Nam;Park, Tae-Woung;Yang, In-Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.23-29
    • /
    • 2003
  • The spot welded sections of automobiles (hat and double hat shaped sections) absorb most of the energy in a front-end collision. The target of this paper is to analyze the energy absorbing capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changed the spot welded pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads at various impact velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. Hat shaped section members were tested at the impact collapse velocities of 4.72m/sec, 6.54m/sec and 7.1m/sec and double hat shaped section members were tested at the impact collapse velocities of 6.54m/sec, 7.1 m/sec and 7.27m/sec.

Statistical Investigateion of Fatigue Life Predictioin of the Spot Welded Lap Joint(II) ; to verity reliabilty of fatigue strength estimatioin method (Spot 용접이음재의 피로수명 예측에 관한 확률적 검토(II) : 피로강도 평가법의 신뢰성 검증)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.242-249
    • /
    • 1999
  • Spot welding is very important and useful technology in fabrication of an automobile body structure. Because fatigue strength of the spot welding point is however considerably lower than parent metal due to stress concentration at the nugget edge, accurate stress analysis and fatigue stength evaluation of spot welded lap joint are very important to valuate the reliability and durability of automobile body structure and to establish a criterion of long life fatigue design. Many invetigators have studied so far onsystematic fatigue strength evaluation with various methods. It is however necessary to verify their reliability and abailability for practical application to fatigue design of spot welded structure, Thus,in this study, fatigue strength evaluation methods of spot welded lap joint. which are the maximum principal stress method. the fracture and availability with the Weibull probability distribution. From the results, it was found that reliability and availability withe the Weibull probaility distribution. From the results, it was found that reliability and availability of the suggest fatigue strength estimation methods methods were higher than $\Delta$P-$N_f$ relation. However, among them , reliability of the maximum pricipal stress method was the highest.

  • PDF

The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment (Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향)

  • Song, Jun-Hyouk;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)