• 제목/요약/키워드: Weld root gap

검색결과 20건 처리시간 0.029초

용접부의 기계적 성질 및 피로강도에 미치는 루트 간격의 영향 (The Effects of Root Gap on Mechanical Properties and Fatigue Strength of Weldment)

  • 이원근;장경복;강성수
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.98-103
    • /
    • 2001
  • Root gap out of standard by welding deformation is frequently produced at butt weld joints of steel bridge. For example although standard root gap is below 6mm at butt weld joints of plates under 15mm thickness. maximum 35mm root opening is produced at the weld field. At this case, the part out of standard is generally built up and the rest part is welded by WPS. Direct welding without built-up welding is preferred in weld field because built-up welding process bring about the cost-up at manufacturing. To apply this direct weld to root gap out of standard, the investigation about mechanical properties and fatigue at weldment is required. Inthisstudy, therefore the verification for direct weld without built up is performed at weldment as root gap. It includes tension, bending. hardness, impact and fatigue test for each welding specimen of 6mm, 25mm, 35mm root gap.

  • PDF

FCAW 용접부의 인성에 미치는 Root Gap의 영향 (Effect of root gaps on toughness of FCAW weld metal)

  • 한종만;이은배;안성철;한용섭
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.40-49
    • /
    • 1991
  • Both impact and fracture toughnesses were investigated with root gaps in FCAW weld metals at room temperature and 0.deg.C. The maximum impact value was obtained at the root gap of 16mm for 1G position weld metal, and the impact value of 3G position weld metals also showed the maximum impact value at the root gap of 12mm. However, the fracture toughnes(CTOD)values tend to decrease with increasing root gaps at both temperatures in 1G weld metal. Bending test also showed satisfactory results with all of root gaps investigated. Based on this result, it becomes possible to apply wide root gaps in real projects in both aspects of toughness and bending resistance.

  • PDF

루트간격이 용접부의 기계적 성질과 미세조직에 미치는 영향에 관한 연구 (A Study on the Effects of Root Gap on Mechanical Properties and Microstructure of Weldment)

  • 이원근;장경복;강성수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.187-193
    • /
    • 1999
  • Dimensional difference by welding deformation is usually occurred at steel bridge manufacturting or multi-pass welding used at joining of thick plates. Be this, root gap out of standard is frequently developed at butt weld joints. For example, although standard root gap below 6mm at butt weld joints of plates under 15mm thickness, maximum 30mm root opening is developed at the weld field. At this case, 24mm parts out of standard is generally built up. But, there are no accumulated data and restriction about this built up welding pars. In this study, therefore, the accumulation of data for built up parts and the verification of the mechanical properties of weld part as root gap is performed. It is included that tensile, bending, impact, hardness test and microstructural review for each welding specimen of 0mm, 6mm, 30mm root opening.

  • PDF

신경회로망을 이용한 용접 Root Gap 검출과 모니터링에 관한연구 (A Study on Detecting and Monitoring of Weld Root Gap using Neural Networks)

  • 강성인;김관형
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1326-1331
    • /
    • 2006
  • 일반적으로 용접 Root 캡은 여러 가지 용접 결함들 중에 용접 품질을 저하시키는 중요한 요인 중의 하나이다. Gas metal arc welding (GMAW)에서 root 갭은 용접 전류, 아크 전압, 용적률 등과 같은 여러 가지 용접 파라미터들에 영향을 미친다. 그러나 용접 공정의 비선형성 때문에 root 갭과 많은 용접 파라미터들 사이의 관계를 분석하기가 힘들다. 그리고 아크센서를 사용하였을 경우, 감지된 신호에 대한 신호처리가 어렵지만 가격이 저렴하고 자동화하기가 쉬우므로 현재의 산업공정에서 대부분 아크센서가 사용되고 있다. 지금까지 언급된 여러 가지 어려운 문제점과 아크센서의 특정 때문에 본 논문에서는 GMAW에서 root 갭을 검출할 수 있는 적당한 용접 파라미터들을 선정하고, root 캡과 선정된 파라미터들의 관계를 인식할 수 있는 신경회로망을 이용하여 root 갭 검출 시스템을 설계하였다. 또한, 용접 품질의 검사에 용접 비드형상이 중요한 요인이다. 따라서 본 논문에서는 신경회로망으로 용접 파라미터와 용접 비드형상과의 관계를 인식하여, 용접 품질을 추정하고 용접 파라미터들의 효과를 분석할 수 있는 용접 비드 형상의 실시간 모니터링 시스템을 제안하여 여러 실험 데이터들을 기반으로 한 시뮬레이션을 통해 제안된 시스템이 root 갭을 검출하고 또한 용접 비드 형상을 실시간으로 모니터링이 가능함 보여준다.

교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향 (Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구 (A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

GMA 위보기 및 수직자세 초층용접 최적조건 선정에 관한 실험적 연구 (A Experiment Study on Selection the Optimal Condition for GMA Root-pass Welding in Overhead and Vertical Position)

  • 김지선;김인주;김일수
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.42-48
    • /
    • 2012
  • Due to increase in demand of stable and long pipelines in natural gas industry, wide range of researches are being performed on automation welding to improved welding quality with respect to weld process parameters in real time measurement. In particular, the coupling between the pipe manufacturing process and location of the weld seam, the measured size of the gap that exists in the weld position and the weld angle depending on whether the movement of molten weld. This is due to absence of controlling welding penetration position, depending on the required size of the angle of the setting. In addition, the optimum welding conditions must be considered while selecting, the correlation between these variables and the systematic correlation has not yet been identified. Therefore, in most welded pipe root-pass weld solely depends on the experience of workers in relation to secure a stable weld quality. In this study, automation welding system is implemented to select a suitable root-pass STT (Surface Tension Transfer) welding method using the optimal welding conditions. To successfully accomplish this objective, there were various welding conditions used for welding experiment to confirm that the assessment required for construction through the pipe and automatic welding process is proposed to optimize this plan.

루트부 갭이 있는 양면 필릿용접 이음부의 용접잔류응력 분포 (Distribution of Welding Residual Stresses in T-joint Weld with Root Gap)

  • 방한서;김성환;김영표;이창우
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.81-88
    • /
    • 2002
  • 용접구조물의 루트부는 외력에 의한 응력 집중에 의해 파손되기 쉽다. 따라서 구조물의 안전성 및 신뢰성 측면에서 홈 가공한 그루브 용접에 의한 완전용입 용접이 일반적으로 요구되어진다. 하지만 필릿 T-이음부 용접은 루트부의 갭과 같은 불완전 용입부를 만들어내기 쉬움에도 불구하고 홈 가공 시간 및 용접봉 소모량을 줄이기 위해 이러한 필릿용접이 자주 행해지고 있다. 따라서, 본 연구에서는 필릿 용접구조물의 플래이트(또는 플랜지)와 웨브 부분에 발생하는 용접잔류 응력과, 특히 불완전 용입에 의한 루트부 갭을 갖는 양면 T-이음부의 노치부분에 발생하는 잔류응력 분포를 해석하고자 하였다. 해석을 위해서 서브머지드 아-크 용접에 의한 단층 및 다층패스용접 모델을 선정하였으며, 열전도 및 열탄소성 이론을 고려한 유한요소 프로그램을 사용하였다.

회전아크를 이용한 수평필릿 용접에 관한 연구 (I) - 공정변수와 용접비드형상의 관계 - (A Study on Horizontal Fillet Welding by Using Rotating Arc (I) - Relation Between Welding Parameters and Weld Bead Shape)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.40-45
    • /
    • 2003
  • The high-speed rotating arc process forms a flat bead surface with decreased penetration depth because the molten droplets are deflected by centrifugal force. Therefore the rotating arc welding for horizontal fillet welding increases the leg length with the increase of rotation frequency and prevents the deflection of weld bead and overlap. In this study, the relationship between the welding parameters and the weld bead shape - leg length and undercut - are investigated experimentally. Consequently, the weld quality could be improved by rotating arc welding, and sound weld bead was achieved when applied to horizontal fillet welding with 4mm gap by avoiding the undercut which is inevitable for the conventional GMA welding methods.

GMAW 루트패스 이면비드 용접에서 아크력제어에 의한 갭변동 극복 방법 (Method to Overcome Gap Variation by Control of Arc Force in Root Pass Welding for Back Bead by GMAW)

  • 손창희;조상명
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.77-81
    • /
    • 2011
  • In most industry, manual GTAW welding is preferred for formation of stable back bead in root weld of butt joint. However, manual GTAW welding has low productivity as compared with GMAW, also it has unstable bead quality which depend on skilled workers. So it is necessary to develop process of root pass welding by using automation GMAW that have stable back bead formation and high productivity. In this paper, the design of U-groove with 3mm root face was applied to extend the tolerance of misalignment in condition of standard root gap 1.5mm. Consequently, for the formation of stable back bead in root pass of butt welding, in case of the narrow root gap(0.5mm) the large arc force was applied by increasing the current and voltage. In case of the large root gap(2.5mm), the small arc force was applied by decreasing the current and voltage. Considering the various root gap, the required deposited metal was controlled by welding speed only.