• Title/Summary/Keyword: Weld residual stress

Search Result 311, Processing Time 0.029 seconds

The Effects of Heat Treatment on the Fatigue Life and Welding Residual Stress of Welded Carbon Steel Plates (탄소강 후판용접부의 피로수명 및 잔류응력에 미치는 열처리 영향)

  • An, I.T.;Kim, W.T.;Jo, J.R.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The effects of heat treatment on the fatigue life and welding residual stress of welded plates were investigated in this study. The plates were welded by flux cored arc welding process, and post weld heat treated at $600^{\circ}C$ for 1 hour. The residual stresses of welded plates before and after post weld heat treatment were measured by hole drilling method. To measure the fatigue life of welded plates, low cycle fatigue tests under strain control and high cycle fatigue tests under load control were performed respectively, by using cylindrical specimens containing weld metal and heat affected zone. The obtained result shows that the post weld heat treatment reduces the residual stress, and resultantly changes the fatigue life of welded plate. Goodman diagrammatic analysis has also been performed to study the effect of post weld heat treatment on the high cycle fatigue life.

Design of Specimen for Weld Residual Stress Simulation (용접 잔류응력 모사를 위한 시편 설계)

  • Kim, Jin-Weon;Park, Jong-Sun;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.67-72
    • /
    • 2008
  • The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe.

  • PDF

Design of a Laboratory Specimen for Simulation of Weld Residual Stress (용접 잔류음력 모사를 위한 시편 설계)

  • Kim, Jin-Weon;Park, Jong-Sun;Lee, Kyoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding between pipes. Specimen type and method to generate residual stress were proposed based on the review of prior studies and parametric finite element analysis. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element analysis considered in the specimen design. Comparison of residual strains measured at several locations on the specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen in this study can reasonably simulate the axial residual stress of a circumferential butt welding of pipe.

Assessment of Round Robin Analyses Results on Welding Residual Stress Prediction in a Nuclear Power Plant Nozzle (원전 노즐 용접부 잔류응력 예측을 위한 Round Robin 해석 결과 분석)

  • Song, Tae-Kwang;Bae, Hong-Yeol;Kim, Yun-Jae;Lee, Kyoung-Soo;Park, Chi-Yong;Yang, Jun-Seog;Huh, Nam-Su;Kim, Jong-Wook;Park, June-Soo;Song, Min-Sup;Lee, Seung-Gun;Kim, Jong-Sung;Yu, Seung-Cheon;Chang, Yoon-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper provides simulational round robin test results for welding residual stress prediction of safety/relief nozzle. To quantify the welding variables and define the recommendation for prediction and determination of welding residual stress, 6 partners in 5 institutes participated in round robin test. It is concluded that compressive axial and hoop residual stress occurs in dissimilar metal weld and pre-existing residual stress distribution in dissimilar metal weld was affected by similar metal weld due to short length of safe end. Although the reason for the deviation among the results was not pursued further, the effect of several key elements of FE analyses on welding residual stress was investigated in this paper.

Effects of welding direction and residual stress on the Laser welds (용접방향에 따른 겹치기 레이저 용접부의 피로강도)

  • Cho, Sung-Kyu;Jang, Sang-Kyu;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Finite element analysis and experiment were peformed to estimate the fatigue strength for the lap joint of laser weld. To consider quantitatively residual stress which effects on the fatigue strength of the lap joint of laser weld, after three dimensional modeling for the longitudinal and transverse direction, residual stress fields in the weldment were calculated using thermo-elastic-plastic finite element analysis, then the equivalent fatigue stress considering the residual stress was obtained. To ensure reliability of calculated fatigue strength, fatigue tests were performed. The calculated and experimental results showed a good agreement. The fatigue strength considering a residual stress was lower than that of without considering a residual stress in the lap joint of laser welding. The fatigue strength in the transverse direction was higher than that of longitudinal direction.

  • PDF

Cr-Mo강 용접후 열처리재의 피로파괴에 관한 연구

  • 임재규;정세희;최동암
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.73-80
    • /
    • 1987
  • During PWHT, it is well known that residual stress in weld HAZ is one of the reasons for PWHT embitterment. In case of static loading, it was experimentally found that fracture toughness of weld HAZ was dependant upon PWHT conditions. However, the effects of PWHT on fatigue behavior are not clearly verified. Therefore, in this paper, the effects of heating rate PWHT conditions and residual stress simulated in weld HAZ of Cr-Mo steel on fatigue crack propagation behavior were evaluated by fatigue Testing and SEM observation. The obtained results are summarized as follows; 1. Applied stress($10 Kgf/mm^2$) in weld HAZ during PWHT tneded to decrease fatigue strength and to increase fatigue crack growth rate. 2. Applied stress and slow heating rate of 60.deg. C/hr during PWHT contributed to precipitin of impurity elements as well as carbide, which promoted the fatigue crack growth. 3. Fatigue crack growth rate decreased at the heating rate of 220.deg. C/hr in contrast with 600.deg. C/hr and 60.deg. C/hr.

  • PDF

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.

Finite Element Analysis of Strain and Residual Stress in Weld Specimen (용접시편 변형률 및 잔류응력의 유한요소해석)

  • 양승용;구병춘;정흥채
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2004
  • This paper consists of two parts. One is finite element analysis of the redistribution of residual stresses of weld specimen by cutting. This work is necessary to predict the actual residual stress distribution of weld specimens used in fatigue test. The other subject is to calculate the relaxation of residual stress and the strain field induced by cyclic loading. To obtain fatigue life of weldment, the value of strain amplitude at each position is necessary, for example in the strain-life approach, and the numerical results can be used to verify experimental strain measurements. Thermo mechanical finite element analyses were conducted on the commercial package ABAQUS.

Investigation on the Effects of Preventive Maintenance Schemes for Dissimilar Metal Welds on the Residual Stress Distribution (이종금속용접부 예방정비 방법에 따른 잔류응력 분포 고찰)

  • Song, Tae-Kwang;Choi, Young Hwan;Park, Jeong Soon;Chung, Hae-Dong;Oh, Chang-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.1-11
    • /
    • 2011
  • This paper presents the effects of preventive maintenance schemes on the residual stress distributions in dissimilar metal welds. Dissimilar metal weld is known susceptible to PWSCC and thus, effective maintenance schemes to prevent PWSCC are needed. Three preventive maintenances schemes, i.e. weld overlay, MSIP and inlay weld which are widely used in nuclear power plants, are selected and their effects on welding residual stresses are investigated via finite element analyses. As results, weld overlay and MSIP were proved effective method to mitigate residual stresses and inlay weld, on the other hand, produces strong tensile residual stresses in the inner surface. Although Alloy 690 known to be resistant to PWSCC are used in inlay weld, continuous careful observation are needed since tensile welding residual stresses are key parameter for PWSCC.

Effect of welding residual stress on operating stress of nuclear turbine low pressure rotor

  • Tan, Long;Zhao, Liangyin;Zhao, Pengcheng;Wang, Lulu;Pan, Jiajing;Zhao, Xiuxiu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1862-1870
    • /
    • 2020
  • The purpose of this study is to investigate the effect of welding residual stress on operating stress in designing a nuclear turbine welded rotor. A two-dimensional axisymmetric finite element model is employed to calculate the residual stress before and after post weld heat treatment (PWHT), and then the superposition of residual stress after PWHT and operating stress at normal speed and overspeed were discussed. The investigated results show that operating stress can be affected significantly by welding residual stress, and the distribution trend of superposition stress at the weld area is mainly determined by welding residual stress. The superposition of residual stress and operating stress is linear superposition, and the hoop stress distribution of superposition stress is similar with the distribution of residual stress. With the increasing overspeed, the distribution pattern of the hoop superimposed stress remains almost unchanged, while the stress level increases.