• Title/Summary/Keyword: Weld pool formation

Search Result 25, Processing Time 0.016 seconds

Development of an algorithm for Controlling Welding Bead Using Infrared Thermography (적외선 카메라를 이용한 용접비드를 제어하기 위한 알고리즘 개발)

  • ;;;;;Y.Prasad
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.55-61
    • /
    • 2000
  • Dynamic monitoring of weld pool formation and seam deviations using infrared vision is described in this paper. Isothermal contours representing heat dissipation characteristics during the process of arc welding were analysed and processed using imaging techniques. Maximum bead width and penetration were recorded and the geometric position in relation to the welding seam was measured at each sampling point. Deviations from the desired bead geometry and welding path were sensed and their thermographic representations were digitised and welding path were sensed and their thermographic representations were digitised and subsequently identified. Evidence suggested that infrared thermography can be utilized to compensate for inaccuracies encountered in real-time during robotic arc welding.

  • PDF

Effect of Ni and Mo on Mechanical Properties of Submerged Arc Welds with Flexible Glasswool Backing (FGB SAW 용접부 물성에 미치는 Ni과 Mo의 영향에 관한 연구)

  • Jee, C.H.;Choi, J.T.;Kim, D.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • FGB(Flexible Glasswool Backing) Submerged Arc Welding has been one of the main welding processes for one side butt welding in shipbuilding industries, which can efficiently improve the welding productivity by the addition of a supplementary filler metal into the molten weld pool. As recent ships have become larger in size, the application of high tensile and higher grade of steels has been continuously increased. Single pass FGB SA welding process accompanies such a high heat input when welding thick plates that the mechanical properties of weld metal can be dramatically degraded. This study has been performed in order to obtain high toughness and tensile properties of high heat input FGB SA welds, and to evaluate the effect of alloy elements on their mechanical properties. To complete welding 25mm-thick EH36 grade steel plate by single pass, 1.2mm diameter and 1.0mm long cut wires has been distributed in the groove before welding, and three different test coupons have been made using C-1.5%Mn, C-1.8%Mn-0.5%Mo, and C-1.4%Mn-1.7%Ni cut wires to investigate the influence of nickel(Ni) and molybdenum(Mo) on the mechanical properties of welds. Test results showed that the addition of Ni and Mo effectively promotes the formation of Acicular Ferrite(AF), while significantly reducing the amount of Grain Boundary Ferrite(GBF) in weld metal microstructures, which resulted in a beneficial effect on low temperature impact toughness and strength.

  • PDF

Experimental Study and Numerical Modeling of Keyhole Behavior during CO2 Laser Welding

  • Kim, Jong-Do;Oh, Jin-Seok;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.282-292
    • /
    • 2007
  • The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during $CO_2$ laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

Characteristics of the Hard-Overlayers by WC-12%Co Powder Addition in MIG Welding of Al Alloy (Al 합금의 MIG 용접에서 WC-12%Co 분말에 첨가에 의한 경화육성층의 특성)

  • 박정식;양병모;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.102-107
    • /
    • 2000
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thick surface hardening alloy layers. The thick surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG welding process with WC-12%Co powder addition. Effects of the dispersion of WE-12%Co powders on hardness and wear characteristics of alloys were investigated. The following results were obtained. Most of WE-12%Co powders are dispersed nearly uniform as unmelted particles in the matrix alloy. A part of WC-12%Co powders are melted in the molten pool, and during solidification {TEX}$Al_{9}Co_{2}${/TEX} appeared. With increasing addition of WC-12%Co powders, the hardness and specific wear resistance of the overlay weld alloys increased and reached Hv450 at WC-12%Co powder addition rate of 54g/min. It is considered that excellent wear resistance of the overlayed alloys was due to dispersed WC-12%Co powders and increased 10 times at WC-12%Co powder addition rate of 54 g/min than that of the WC-free overlaying layers.

  • PDF

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF