• 제목/요약/키워드: Weld penetration

검색결과 234건 처리시간 0.024초

응력확대계수를 이용한 하중 전달형 필릿 용접부의 피로강도 평가에 관한 연구 (A Study on the Fatigue Life Assessment for Load-carrying Fillet Welded Joints using Stress Intensity Factor)

  • 김명현;강성원;김형래
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.97-102
    • /
    • 2008
  • It is well known that there exist two typical fatigue crack initiation locations in ship structures: one is the weld toe and the other is the weld root where partial penetration weld is performed. In particular, it is important for fillet weldments to avoid weld root cracking in order to prevent catastrophic failure particularly in ship structures. Therefore detail considerations are required for cruciform joints with partial penetration when there is a possibility of weld root crack initiation. For these reasons, fatigue tests on welded joints were performed in this study. Concept of stress intensity factor(SIF) by means of fracture mechanics is applied for predicting fatigue life of fillet welded joints.

보호가스에 따른 Tailored Blank 레이저 용접성 평가에 관한 연구 (Effects of shielding Gas Types on $CO_2$ Laser Weldability)

  • 정봉근;유순영;박인수;이창희
    • 한국레이저가공학회지
    • /
    • 제1권1호
    • /
    • pp.30-38
    • /
    • 1998
  • This study includes the efface of shielding gas types on $CO_2$ laser weldability of low carbon automotive galvanized steel. The types of shielding gas evaluated are He, $CO_2$, Ar, $N_2$, 50%Ar+50%$N_2$. The weld penetration, strength, formability(Erichsen test) of Laser weld are found to be strongly dependent upon the types of shielding gas used. Further, the maximum travel speed and flow rate to form a keyhole weld is also dependent upon types of shielding gas. The ability of shielding gas in removing plasma plume and thus increasing weld penetration is believed to be closely related with ionization/dissociation potential, which determine the period of plasma formation and disappearance. Further, thermal conductivity and reactivity of gas with molten pool also give strong effect on penetration and porosity formation which in turn affect on the formability and strength.

  • PDF

십자형 필릿 용접부에서의 피로파괴 형상과 특성 (Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint)

  • 이용복;정준기;박상흡
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

레이저용접부 온도측정을 위한 적외선 온도측정장치의 개발에 관한 연구(I) -용융부 형상에 따른 표면온도분포- (A Study of the Infrared Temperature Sensing System for Surface Temperature Measurement in Laser Welding(I) - Surface Temperature Profile According to Bead Shape -)

  • 이목영;김재웅
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.62-68
    • /
    • 2002
  • This study investigated the feasibility of penetration depth measurement using infrared temperature sensing on the weld surface. The detection point was optimized by FEM analysis in the laser keyhole welding. The profile of the weld surface temperature was measured using infrared detector array. Surface temperature behind the weld pool is proportional or exponentially proportional to penetration depth and bead width. From the results, the monitoring device of surface temperature using infrared detector array was applicable fur real time penetration depth control.

파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구 (A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

STS304L 캡슐의 펄스형 GTA 용접에서 용접변수들이 용접부 형상에 미치는 영향 (The Effect of Welding Parameters on the Weld Shape in Pulsed GTA Welding of a STS304L Stainless Steel Capsule)

  • 이형근;한현수;손광재
    • Journal of Welding and Joining
    • /
    • 제25권5호
    • /
    • pp.64-71
    • /
    • 2007
  • The aim of this paper is to investigate the effects of welding parameters on the weld shape in seal-welding of STS304L capsule for manufacturing a radioisotope source which is widely used in nondestructive testing of metal structures using gamma ray. Pulsed gas tungsten arc (Pulsed GTA) welding is performed for thin cross sectional area of the capsule. Seven welding parameters including current waveform parameters and arc length etc. are selected as main process parameters using design of experiment. The weld shape such as bead width, penetration depth, weld area, aspect ratio and area rate is investigated to assess the effects of welding parameters. As results, the combination of pulse duty/welding speed largely affects on bead width, penetration depth, area and aspect ratio. Finally, it is concluded that the key parameters are the combination of pulse duty/welding speed, base current and arc length, and their optimal conditions are 50%/1.77mm/s, 6.4A and 1 mm.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment

  • Kim, Seok;Shim, Yong-Lae;Song, Jung-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1033-1039
    • /
    • 2002
  • Partial penetration welding joint refers to the groove weld that applies to the one side welding which does not use steel backing and to both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. According to the above-mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area are so minimal and do not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi pass welding with 25.4 mm thick plate by using the J-integral, which finally led us the conclusion that the partial penetration multi-pass welding method is more applicable and effective in handling the root face with less than 6.35 mm.

용접이음부의 피로강도 해석을 위한 수치해석과 실험과의 비교연구 (A study on welding connection's fatigue analysis through numerical and experimental approaches)

  • 조규남;하우일
    • 전산구조공학
    • /
    • 제6권3호
    • /
    • pp.113-123
    • /
    • 1993
  • 대부분의 선체 및 해양구조물은 용접을 통해서 만들어지며 이러한 구조물들은 항상 변화되는 하중에 노출된다. 본 논문에서는 T형 용접이음부의 응력집중과 피로특성규명을 위하여 수치해석적 방법을 통한 연구결과를 실험결과와 비교 검토하였다. 특히 필렛용접, 완전 용입용접, 부분 용입용접부의 특성을 응력집중과 피로강도면에서 연구하여ㅛ으며 이를 위한 파라메터로는 불 용입부의 길이, 각장의 크기 및 형태, 삽입판의 각도등을 채택하였다. 최적의 용접을 위하여 각 파라메터의 선정을 효과적으로 할 수 있도록 응력 및 피로수명분표, S-N선도를 정리하엿으며 필렛용접이 용입용접을 대신하여 사용될 수 있는 근거를 제시하였다. 본 연구결과는 실제 현장에서 구조의 용접이음부 형태 선정에 지침이 될 수 있다.

  • PDF

INVESTIGATIONS ON VARIABLE WELD PENETRATIONS IN GTA WELDING OF AUSTENITIC AND MARTENSITIC STAINLESS STEELS

  • Puybouffat, Sylvain;Chabenat, Alain;Boudot, Cecile;Marya, Surendar
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.752-756
    • /
    • 2002
  • Variable weld bead penetrations related to the base metal chemistry of stainless steels in GTA welding have been under constant investigations due to their industrial implications. It has been proposed that among other elements, the sulfur content of steels determines the weld pool geometry, particularly its penetration. It is suggested that the surface tension temperature gradient of steels becomes positive with appropriate dosing in sulfur and results in inward melt flow, propitious for deeper welds. However, the chemistry of industrial steels is complex due to the presence of multiple minor elements either deliberately added or remnant impurity traces. With this in view, investigations on 41 austenitic and nine martensitic stainless steels were carried to see if there existed any possible relation between the weld profile and some of the designated elements. The results suggest no direct correlation between sulfur or any other major or trace element and weld penetration. At first glance the results are contradictory to what is often asserted.

  • PDF

9%Ni 강의 전자빔 용접성에 관한 연구 II -비이드형상에 미치는$a_b$parameter의 영향 (A study on the electrom beam weldability of 9%Ni steel (II) - Effect of $a_b$ parameter on bead shape -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.88-98
    • /
    • 1997
  • Welding defects, such as porosity and spike, have sometimes occurred in deep penetration electron beam welds. These defects are known to be one of the serious problem in electron beam welds. So, effects of active parameters ($a_b$) on bead shape and occurrence of defects in electron beam welds of heavy section 9%Ni steel plates were investigated. Partial penetration welding in flat position, and deep penetration welding of 10 ~ 28mm depth were investigated in this study. It is desirable to select low accelerating voltage and above the surface focus position $a_b$$\geq$1.2 at which a wine-cup shaped bead is obtained to avoid the welding defects such as spike and root porosity. When the accelerating voltage of electron beam was low (90kV), active parameter ($a_b$) did not influence on the bead width, penetration depth and weld defects significantly. However, in case of high voltage ($\geq$120kV), active parameter ($a_b$) was sensitively associated with penetraton depth and weld defects, i.e. when the active parameter (($a_b$) was in the range of 0.6 to 1.0, the depth of penetration was always over the target (23mm), while the depth of penetration was dramatically decreased with further increase of active parameter ($a_b$). The weld defects were decreased with the increase of active parameter $a_b$ resulting in the decrease of energy density of the focused beam in the root part of fusion zone.

  • PDF